1887

Abstract

Summary

The sequence of events involved in haemagglutination and lysis of erythrocytes by washed cells, vesicles and the culture supernate of strain W83 was monitored by Cr release and transmission electronmicroscopy. All preparations, except capsular material and lipopolysaccharide, caused haemagglutination and, by a slow process of attachment and specific attack on the surface structures of the red blood cells, produced minute pores and eventual leakage of cellular contents. N-acetylglucosamine, N-acetylgalactosamine and several other sugars such as glucose and sucrose had no effect on haemagglutination. Antiserum raised against a cloned haemagglutinin of strain 381 inhibited the activity of strain W83 cells, vesicles and supernate. The antiserum-neutralised supernate lost 70–80% of its hydrolytic activity towards α-N-benzoyl-L-arginine-4-nitroanilide but the residual activity behaved in a manner similar to the native supernate in that it was completely inhibited by the addition of 2,2′-dipyridyl disulphide and was fully restored upon addition of a low-M mercaptan. Binding of the antiserum to the haemagglutinin epitope of still permitted titration of the active centre cysteinyl thiol group of the proteinase. Purified gingivain caused lysis of erythrocytes and was not neutralised by antiserum to the haemagglutinin. These results suggest that, although the haemagglutinin and gingivain are probably separate molecules, they are closely associated on the outer membrane of and may be functionally related.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-4-239
1992-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/4/medmicro-36-4-239.html?itemId=/content/journal/jmm/10.1099/00222615-36-4-239&mimeType=html&fmt=ahah

References

  1. Boyd J., McBride B. C. Fractionation of hemagglutinating and bacterial binding adhesins of Bacteroides gingivalis. Infect Immrn 1984; 45:403–409
    [Google Scholar]
  2. Deslauriers M., Mouton C. Immunoreactivity in humans of Bacteroides gingivalis hemagglutinating adhesin HA-Ag2. Oral Microbiol Immunol 1990; 5:302–304
    [Google Scholar]
  3. Inoshita E., Amano A., Hanioka T., Tamagawa H., Shizukuishi S., Tsunemitsu A. Isolation and some properties of exohemagglutinin from the culture medium of Bacteroides gingivalis 381. Infect Immun 1986; 52:421–427
    [Google Scholar]
  4. Nishikata M., Yoshimura F., Nodasaka Y. Possibility of Bacteroides gingivalis hemagglutinin possessing protease activity revealed by inhibition studies. Microbiol Immunol 1989; 33:75–80
    [Google Scholar]
  5. Okuda K., Yamamoto A., Naito Y., Takazoe I., Slots J., Genco R. J. Purification and properties of hemagglutinin from culture supernatant of Bacteroides gingivalis. Infect Immun 1986; 54:659–665
    [Google Scholar]
  6. Shah H. N., Gharbia S. E. Lysis of erythrocytes by the secreted cysteine proteinase of Porphyromonas gingivalis W83. FEMS Microbiol Lett 1989; 61:213–218
    [Google Scholar]
  7. Okuda K., Takazoe I. Haemagglutinating activity of Bacteroides melaninogenicus. Arch Oral Biol 1974; 19:415–416
    [Google Scholar]
  8. McBride B. C., Joe A., Singh U. Cloning of Bacteroides gingivalis surface antigens involved in adherence. Arch Oral Biol 1990; 35:59S–68S
    [Google Scholar]
  9. Progulske-Fox A., Tumwasom S., Holt S. C. The expression and function of a Bacteroides gingivalis hemagglutinin gene in Escherichia coli. Oral Microbiol Immunol 1989; 4:121–131
    [Google Scholar]
  10. Shah H. N., Seddon S. V., Gharbia S. E. Studies on the virulence properties and metabolism of pleiotropic mutants of Porphyromonas gingivalis (Bacteroides gingivalis) W50. Oral Microbiol Immunol 1989; 4:19–23
    [Google Scholar]
  11. Haapasalo M., Shah H. N., Gharbia S. E., Seddon S. V., Lounatmaa K. Surface properties and ultrastructure of Porphyromonas gingivalis W50 and pleiotropic mutants. Scand J Dent Res 1989; 97:355–360
    [Google Scholar]
  12. Loesche W. J., Syed S. A., Stoll J. Trypsin-like activity in subgingival plaque. A diagnostic marker for spirochaetes and periodontal disease?. Periodontol 1987; 58:266–273
    [Google Scholar]
  13. Minhas T., Greenman J. Production of cell-bound and vesicle associated trypsin-like protease, alkaline phosphatase and N-acetyl-β-glucosaminidase by Bacteroides gingivalis strain W50. J Gen Microbiol 1989; 135:557–564
    [Google Scholar]
  14. Smalley J. W., Birss A. J. Trypsin-like enzyme activity of the extracellular membrane vesicles of Bacteroides gingivalis W50. J Gen Microbiol 1987; 133:2883–2894
    [Google Scholar]
  15. Smalley J. W., Birss A. J., Kay H. M., McKee A. S., Marsh P. D. The distribution of trypsin-like enzyme activity in cultures of a virulent and an avirulent strain of B gingivalis W50. Oral Microbiol Immunol 1989; 4:178–181
    [Google Scholar]
  16. Sorsa T., Uitto V. J., Suomalainen K., Turto H., Lindy S. A trypsin like protease from Bacteroides gingivalis: partial purification and characterisation. J Periodont Res 1987; 22:375–380
    [Google Scholar]
  17. Yoshimura F., Nishikata M., Suzuki T., Hoover C. I., Newbrun E. Characterisation of a trypsin-like protease from the bacterium Bacteroides gingivalis isolated from human dental plaque. Arch Oral Biol 1984; 29:559–564
    [Google Scholar]
  18. Shah H. N., Gharbia S. E., Kowlessur D., Wilkie E., Brocklehurst K. Gingivain a cysteine proteinase isolated from Porphyromonas gingivalis. Microbiol Ecol Hlth Dis 1991; 4:319–328
    [Google Scholar]
  19. Shah H. N., Williams R. A. D., Bowden G. H., Hardie J. M. Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J Appl Bacterial 1976; 41:473–492
    [Google Scholar]
  20. Wilson M., Meghji S., Harvey W. Effect of capsular material from Haemophilus actinomycetemcomitans on bone collagen synthesis in vitro. Microbois 1988; 54:181–185
    [Google Scholar]
  21. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28:350–356
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265–275
    [Google Scholar]
  23. Brocklehurst K., Carlsson J., Kierstan M. P. J., Crook E. M. Covalent chromatography by thiol-disulfide interchange. Methods Enzymol 1974; 34:531–544
    [Google Scholar]
  24. Brocklehurst K., Carlsson J., Kierstan M. P. J. Covalent chromatography in biochemistry and biotechnology. Topics Enzyme Ferment Biotechnol 1985; 10:146–188
    [Google Scholar]
  25. Westphal O., Jann K. Bacterial lipopolysaccharides extraction with phenol-water and further applications of the procedure. In Whistler R. L. (ed) Methods in carbohydrate chemistry vol 5 New York: Academic Press Inc; 196583–91
    [Google Scholar]
  26. Lino Y., Hopps R. M. The bone-resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteriodes gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch Oral Biol 1984; 29:59–63
    [Google Scholar]
  27. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem 1969; 9:245–249
    [Google Scholar]
  28. Galanos C., Lüderitz O., Reitschel E. T., Westphal O. Newer aspects of the chemistry and biology of bacterial lipopoly-saccharides, with a special reference to their lipid A component. In Goodwin T. W. (ed) The biochemistry of lipids II (International review of biochemistry vol 14 Baltimore: University Park Press; 1977239–335
    [Google Scholar]
  29. Malthouse J. P. G., Brocklehurst K. Preparation of fully active ficin from Ficins glabrata by covalent chromatography and characterization of its active centre by using 2,2′-dipyridyl disulphide as a reactivity probe. Biochem J 1976; 159:221–234
    [Google Scholar]
  30. Erlanger B. F., Kokowsky N., Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95:271–278
    [Google Scholar]
  31. Kay H. M., Birss A. J., Smalley J. W. Haemagglutinating and haemolytic activity of the extracellular vesicles of Bacteroides gingivalis W 50. Oral Microbiol Immunol 1990; 5:269–274
    [Google Scholar]
  32. Brocklehurst K. Two-protonic state electrophiles as probes of enzyme mechanism. Methods Enzymol 1982; 87:427–469
    [Google Scholar]
  33. Griffiths E. The iron-uptake systems of pathogenic bacteria. In Bullen J. J., Griffiths E. (eds) Iron and infection Chichester: John Wiley and Sons; 198769–137
    [Google Scholar]
  34. Barua P. K., Dyer D. W., Neiders M. E. Effect of hemin limitation on Bacteroides gingivalis. Oral Microbiol Immunol 1990; 5:263–268
    [Google Scholar]
  35. McKee A. S., McDermid A. S., Baskerville A., Dowsett A. B., Ellwood D. C., Marsh P. D. Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 1986; 52:349–355
    [Google Scholar]
  36. Carlsson J., Höfling J. F., Sundqvist G. K. Degradation of albumin, haemopexin, haptaglobin and transferrin, by black-pigmented Bacteroides species. J Med Microbiol 1984; 18:39–46
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-4-239
Loading
/content/journal/jmm/10.1099/00222615-36-4-239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error