1887

Abstract

Summary

Adherence to and entry of the parasite into the host is one of the essential elements of microbial pathogenicity. We investigated the adherence to and entry into primate kidney epithelial (Vero) cells of by radiolabelling techniques, immunofluorescence and electronmicroscopy. The attachment to and subsequent entry of both untreated and heat (50°)-treated into Vero cells occurred at cell-surface sites associated with aggregated coated pits. In contrast, there was minimal attachment of spirochaetes heated at 60°. Radiometric studies showed that, with untreated cells, there was incorporation of both C-glucose-1-phosphate and C-thymidine, whereas with the 50°-treated spirochaetes only glucose-1-phosphate was incorporated, and with the 60°-treated spirochaetes neither radionuclide was incorporated. Spirochaetes heated at 50° or 60° did not grow at 35° in culture medium. These results suggest that the presence of certain metabolic activities of the spirochaete but not viability (ability to grow) are necessary for the attachment process. After entry of untreated , most of the spirochaetes were either free in the cytoplasm or tightly bound to the host membrane. In contrast, 50°-treated spirochaetes remained bound to host membrane in large phagosome-like vesicles.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-4-229
1992-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/4/medmicro-36-4-229.html?itemId=/content/journal/jmm/10.1099/00222615-36-4-229&mimeType=html&fmt=ahah

References

  1. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. Lyme disease—a tick-borne spirochetosis?. Science 1982; 216:1317–1319
    [Google Scholar]
  2. Steere A. C., Malawist S. E., Bartenhagen N. H. The clinical spectrum and treatment of Lyme disease. Yale J Biol Med 1984; 57:453–461
    [Google Scholar]
  3. Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev 1989; 53:210–230
    [Google Scholar]
  4. Fitzgerald T. J., Johnson R. C., Sykes J. A., Miller J. N. Interaction of Treponema pallidum (Nichols strain) with cultured mammalian cells: effects of oxygen, reducing agents, serum supplements, and different cell types. Infect Immun 1977; 15:444–452
    [Google Scholar]
  5. Hayes N. S., Muse K. E., Collier A. M., Baseman J. B. Parasitism by virulent Treponema pallidum of host cell surfaces. Infect Immun 1977; 17:174–186
    [Google Scholar]
  6. Benach J. L., Fleit H. B., Habicht G. S., Coleman J. L., Bosler E. M., Lane B. P. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receiptor. J Infect Dis 1984; 150:497–507
    [Google Scholar]
  7. Fumarola D., Cedola M. C., Guanti G., Matsuura A., Uede T., Jirillo E. Adherence of Lyme disease spirochetes to rat lymphocytes. Zentralbl Bakteriol Mikrobiol Hyg 1986; 263:146–150
    [Google Scholar]
  8. Peterson P. K., Clawson C. C., Lee D. A., Garlich D. J., Quie P. G., Johnson R.C. Human phagocyte interactions with the Lyme disease spirochete. Infect Immun 1984; 46:608–611
    [Google Scholar]
  9. Benach J. L., Coleman J. L., Garcia-Monco J. L., Deponte P. C. Biological activity of Borrelia burgdorferi antigens. In Benach J. L., Bosler E. M. (eds) Lyme disease and related disorders Ann NY Acad Sci 1988; 539:115–125
    [Google Scholar]
  10. Hechemy K. E., Samsonoff W. A., McKee M., Guttman J. M. Borrelia burgdorferi attachment to mamalian cells. J Infect Dis 1989; 159:805–806
    [Google Scholar]
  11. Thomas D. D., Comstock L. E. Interaction of Lyme disease spirochetes with cultured eucaryotic cells. Infect Immun 1989; 57:1324–1326
    [Google Scholar]
  12. Kurtti T. J., Munderloh U. G., Ahlstrand G. G., Johnson R. C. Borrelia burgdorferi in tick cell culture: growth and cellular adherence. J Med Entomol 1988; 25:256–261
    [Google Scholar]
  13. Comstock L. E., Thomas D. D. Penetration of endothelial cell monolayers by Borrelia burgdorferi. Infect Immun 1989; 57:1626–1628
    [Google Scholar]
  14. Bosler E. M., Schultze T. L. The prevalence and significance of Borrelia burgdorferi in the urine of feral reservoir hosts. Zentralbl Bakteriol Mikrobiol Hyg A 1986; 263:40–44
    [Google Scholar]
  15. Hyde F. W., Johnson R. C., White T. J., Shelburne C. E. Detection of antigens in urine of mice and humans infected with Borrelia burgdorferi, etiologic agent of Lyme disease. J Clin Microbiol 1989; 27:58–61
    [Google Scholar]
  16. Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 1984; 57:521–525
    [Google Scholar]
  17. Mans R. J., Novelli G. D. Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch Biochem Biophys 1961; 94:48–53
    [Google Scholar]
  18. Magnuson H. J., Eagle H., Fleischman R. Minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and consideration of its rate of multiplication in vivo. Am J Syph Gonor Yen Dis 1948; 32:1–18
    [Google Scholar]
  19. Taylor R. N., Huong A.Y., Fulford K. M., Prezybszewski V. A., Hearn T. L. Quality controls for immunologic tests. U.S. Department of Health, Education and Welfare 1979; 79:54–83
    [Google Scholar]
  20. Hechemy K. E., Harris H. L., Duerr M. J., Benach J. L., Reimer C. B. Immunoglobulin G subclasses specific to Borrelia burgdorferi in patients with Lyme disease. In Benach J. L., Bosler E. M. (eds) Lyme disease and related disorders Ann NY Acad of Sci 1988; 539:162–169
    [Google Scholar]
  21. Hechemy K. E., Harris H. L., Wethers J. A. Fluoroimmuno-assay studies with solubilized antigens from Borrelia burgdorferi. J Clin Microbiol 1989; 27:1854–1858
    [Google Scholar]
  22. Anderson R. G. W., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 1977; 10:351–364
    [Google Scholar]
  23. Anderson R. G. W., Goldstein J. L., Brown M. S. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc Natl Acad Sci USA 1976; 73:2434–2438
    [Google Scholar]
  24. Goldstein J. L., Brown M. S., Anderson R. G. W., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Amu Rev Cell Biol 1985; 1:1–39
    [Google Scholar]
  25. Helinius A., Kartenbeck J., Simons K. On the entry of Semliki Forest virus into BHK 21 cells. J Cell Sci 1980; 84:404–420
    [Google Scholar]
  26. Brodsky F. M. Living with clathrin: its role in intracellular membrane traffic. Science 1988; 242:1396–1402
    [Google Scholar]
  27. Pearse B. M. F. Clathrin and coated vesicles. EMBO J 1987; 6:2507–2512
    [Google Scholar]
  28. Finlay B. B., Gumbiner B., Falkow S. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol 1988; 107:221–230
    [Google Scholar]
  29. Mostov K. E., Simister N. E. Transcytosis. Cell 1985; 43:389–390
    [Google Scholar]
  30. Simons K., Fuller S. D. Cell surface polarity in epithelia. Amu Rev Cell Biol 1985; 1:243–288
    [Google Scholar]
  31. McGee Z. A., Gorby G. L., Wyrick P. B., Hodinka R., Hoffman L. H. Parasite-directed endocytosis. Rev Infect Dis 1988; 10:S311–S316
    [Google Scholar]
  32. Clerc P. L., Sansonetti P. J. Evidence for clathrin mobilization during directed phagocytosis of Shigella flexneri by HEp2 cells. Microbial Pathogen 1989; 7:329–336
    [Google Scholar]
  33. Konishi H., Yoshii Z., Cox D. L. Electron microscopy of Treponema pallidum (Nichols) cultivated in tissue cultures of HEp cells. Infect Immun 1986; 53:32–37
    [Google Scholar]
  34. Repesh L. A., Fitzgerald T. J., Oakes S. G., Pozos R. S. Scanning electron microscopy of the attachment of Treponema pallidum to nerve cells in vitro. Br J Vener Dis 1982; 58:211–29
    [Google Scholar]
  35. Andrade J. R. C., Da Veiga V. F., De Santa Rosa M. R., Suassuna I. An endocytic process in HEp-2 cells induced by enteropathogenic Escherichia coli. J Med Microbiol 1989; 28:49–57
    [Google Scholar]
  36. Hale T. L., Bonventre P. F. Shigella infection of Henle intestinal epithelial cells: role of the bacterium. Infect Immun 1979; 24:879–886
    [Google Scholar]
  37. KihistrȌm E., Edebo L. Association of viable and inactivated Salmonella typhimurium 395 MS and MR 10 by HeLa cells. Infect Immun 1976; 14:851–857
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-4-229
Loading
/content/journal/jmm/10.1099/00222615-36-4-229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error