1887

Abstract

Summary

DNA of was cleaved by the endonuclease RI and ligated with the bacteriophage expression vector λ gt11. After infection of the strain Y1089, the plaques of recombinant phages were screened with a antiserum (human) for fusion proteins containing borrelia antigens. A positive clone produced a hybrid protein (p200) of 200 Kda. The corresponding native borrelia protein (p97) was identified as having an M of 97 Kda. To localise protein p97 in the cell, immunoelectronmicroscopy and a Western blot of isolated flagella were used. Antibodies directed against proteins p200 and p97 recognised epitopes associated with the flagella.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-3-209
1992-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/3/medmicro-36-3-209.html?itemId=/content/journal/jmm/10.1099/00222615-36-3-209&mimeType=html&fmt=ahah

References

  1. Steer A. C. Lyme disease. N Engl J Med 1989; 321:586–596
    [Google Scholar]
  2. Burgdorfer W. Discovery of the Lyme disease spirochete and its relation to tick vectors. Yale J Biol Med 1984; 57:515–520
    [Google Scholar]
  3. Barbour A. G., Hayes S. F. Biology of Borrelia species. Microbiol Rev 1986; 50:381–400
    [Google Scholar]
  4. Howe T. R., Mayer L. W., Barbour A. G. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science 1985; 227:645–646
    [Google Scholar]
  5. Luft B. J., Jiang W., Munoz P., Dattwyler R. J., Gorevic P. D. Biochemical and immunological characterization of the surface proteins of Borrelia burgdorferi. Infect Immun 1989; 57:3637–3645
    [Google Scholar]
  6. Barbour A. G., Garon C. F. The genes encoding major surface proteins of Borrelia burgdorferi are located on a plasmid. Ann N Y Acad Sci 1988; 539:144–153
    [Google Scholar]
  7. Bergström S., Bundoc V. G., Barbour A. G. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 1989; 3:479–486
    [Google Scholar]
  8. Wilske B., Preac-Mursic V., Schierz G., Kühbeck R., Barbour A. G., Kramer M. Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci 1988; 539:126–143
    [Google Scholar]
  9. Coleman J. L., Benach J. L. Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi. J Clin Invest 1989; 84:322–330
    [Google Scholar]
  10. Gassmann G. S., Kramer M., Göbel U. B., Wallich R. Nucleotide sequence of a gene encoding the Borrelia burgdorferi flagellin. Nucleic Acids Res 1989; 17:3590
    [Google Scholar]
  11. Wallich R., Moter S. E., Simon M. M., Ebnet K., Heiberger A., Kramer M. D. The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin). Molecular cloning, expression, and amplification of the gene. Infect Immun 1990; 58:1711–1719
    [Google Scholar]
  12. Hansen K., Bangsborg J. M., Fjordvang H., Pedersen N. S., Hindersson P. Immunochemical characterization of and isolation of the gene for a Borrelia burgdorferi immunodominant 60-kilodalton antigen common to a wide range of bacteria. Infect Immun 1988; 56:2047–2053
    [Google Scholar]
  13. Preac-Mursic V., Wilske B., Schierz G. European Borrelia burgdorferi isolated from humans and ticks. Culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg A 1986; 263:112–118
    [Google Scholar]
  14. Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 1984; 57:521–525
    [Google Scholar]
  15. Wassmann K., Borg-Zepelin M., Zimmermann O., Stadler M., Eiffert H., Thomssen R. Determination of immunoglobulin M antibody against Borrelia burgdorferi to differentiate between acute and past infections. In Lyme borreliosis II. Zentralbl Bakteriol Microbiol Hyg 1989 Suppl 18:281–289
    [Google Scholar]
  16. Nakamura K., Pirtle R. M., Inouye M. Homology of the gene coding for outer membrane lipoprotein within various Gram-negative bacteria. J Bacteriol 1979; 137:595–604
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  18. Huynh T. V., Young R. A., Davis R. W. Constructing and screening in lambda gt10 and lambda gt11. In Clover D. M. (ed) DNA-cloning, a practical approach Washington, IRL Press; 1985
    [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  20. Giiltekin H., Heermann K. H. The use of poly vinylidenedifluoride membranes as a general blotting matrix. Anal Biochem 1988; 172:320–329
    [Google Scholar]
  21. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogenous protein samples. J Biol Chem 1981; 256:11955–11957
    [Google Scholar]
  22. Jacobs E., Clad A. Electroelution of fixed and stained membrane proteins from preparative sodium dodecyl sulfate-polyacrylamide gels into a membrane trap. Anal Biochem 1986; 154:583–589
    [Google Scholar]
  23. Carlemalm E., Garavito R. N., Villiger W. Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc 1982; 126:123–143
    [Google Scholar]
  24. Roth J., Bendayan M., Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 1978; 26:1074–1081
    [Google Scholar]
  25. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 1981; 90:533–536
    [Google Scholar]
  26. Rohde M., Mayer F., Meyer O. Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. J Biol Chem 1984; 259:14788–14792
    [Google Scholar]
  27. Hovind-Hougen K. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J Biol Med 1984; 57:543–548
    [Google Scholar]
  28. Brahamsha B., Greenberg E. P. Biochemical and cytological analysis of the complex periplasmic flagella from Spirochaeta aurantia. J Bacteriol 1988; 170:4023–4032
    [Google Scholar]
  29. Bharier M., Allis D. Purification and characterization of axial filaments from Treponema phagedenis biotype reiterii (the Reiter treponeme). J Bacteriol 1974; 120:1434–1442
    [Google Scholar]
  30. Nauman R. K., Holt S. C., Cox C. D. Purification, ultrastructure, and composition of axial filaments from Leptospira. J Bacteriol 1969; 98:264–280
    [Google Scholar]
  31. Limberger R. J., Charon N. W. Treponema phagedenis has at least two proteins residing together on its periplasmic flagella. J Bacteriol 1986; 166:105–112
    [Google Scholar]
  32. Wilske B., Preac-Mursic V., Schierz G., Busch K. V. Immunochemical and immunological analysis of European Borrelia burgdorferi strains. Zentralbl Bakteriol Mikrobiol Hyg A 1986; 263:92–102
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-3-209
Loading
/content/journal/jmm/10.1099/00222615-36-3-209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error