1887

Abstract

Summary

Nasal polyp cells in primary culture from cystic fibrosis (CF) and non-CF patients were compared for the ability to bind cells and for the presence of sulphated glycoconjugates at the epithelial cell surface. Quantitation of bacterial adhesion, by scanning electronmicroscopy, showed no significant difference between the cells cultured from CF and non-CF patients. Micro-organisms associated with ciliated cells were mainly aggregated, in contrast with those from non-ciliated cells. Sulphated glycoconjugates were identified on cells cultured from both CF and non-CF patients, regardless of whether or not these cells had attached bacteria. A matrix-like material that surrounded the aggregated bacteria was more prominent on cells cultured from CF patients than on those from non-CF patients. The interaction of aggregated cells with polyp cells cultured from both CF and non-CF patients appeared to occur by means of this matrix material. Our findings suggest that chronic colonisation of the airways of CF patients cannot be explained by an increased affinity between the cells and the respiratory cell surface receptors in the CF patient. Nevertheless, the in-vitro observation that the matrix surrounding the bacteria reacted with a monoclonal antibody against respiratory mucins allows us to speculate that increased mucin secretion by cells from CF patients might, , play a decisive role in the interaction between and the respiratory epithelium.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-36-2-104
1992-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/36/2/medmicro-36-2-104.html?itemId=/content/journal/jmm/10.1099/00222615-36-2-104&mimeType=html&fmt=ahah

References

  1. Puchelle E., Jacquot J., Beck G., Zahm J. M., Galabert C. Rheological and transport properties of airway secretions in cystic fibrosis-relationships with the degree of infection and severity of the disease. Eur J Clin Invest 1985; 15:389–394
    [Google Scholar]
  2. Ramphal R., Pyle M. Evidence for mucins and sialic acid as receptors for Pseudomonas aeruginosa in the lower respiratory tract. Infect Immun 1983; 41:339–344
    [Google Scholar]
  3. Vishwanath S., Ramphal R. Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin. Infect Immun 1984; 45:197–202
    [Google Scholar]
  4. Nelson J. W., Tredgett M. W., Sheehan J. K., Thornton D. J., Notman D., Govan J. R. W. Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect Immun 1990; 58:1489–1495
    [Google Scholar]
  5. Baltimore R. S., Christie C. D. C., Smith G. J. W. Immunohistopathological localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Am Rev Respir Dis 1989; 140:1650–1661
    [Google Scholar]
  6. Ramphal R., Houdret N., Koo L., Lamblin G., Roussel P. Differences in adhesion of Pseudomonas aeruginosa to mucin glycopeptides from sputa of patients with cystic fibrosis and chronic bronchitis. Infect Immun 1989; 57:3066–3071
    [Google Scholar]
  7. Baker N. R., Marcus H. Adherence of clinical isolates of Pseudomonas aeruginosa to hamster tracheal epithelium in vitro. Curr Microbiol 1982; 7:35–40
    [Google Scholar]
  8. Marcus H., Austria A., Baker N. R. Adherence of Pseudomonas aeruginosa to tracheal epithelium. Infect Immun 1989; 57:1050–1053
    [Google Scholar]
  9. Plotkowski M. C., Beck G., Tournier J. M., Bernardo-Filho M., Marques E. A., Puchelle E. Adherence of Pseudomonas aeruginosa to respiratory epithelium and the effect of leucocyte elastase. J Med Microbiol 1989; 30:285–293
    [Google Scholar]
  10. Niederman M. S., Rafferty T. D., Sasaki C. T., Merrill W. W., Matthay R. A., Reynolds H. Y. Comparison of bacterial adherence to ciliated and squamous epithelial cells obtained from the human respiratory tract. Am Rev Respir Dis 1983; 127:85–90
    [Google Scholar]
  11. Franklin A. L., Todd T., Gurman G., Black D., Mankinen-Irvin P. M., Irvin R. T. Adherence of Pseudomonas aeruginosa to cilia of human tracheal epithelial cells. Infect Immun 1987; 55:1523–1525
    [Google Scholar]
  12. Saiman L., Ishimoto K., Lory S., Prince A. The effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial monolayers. J Infect Dis 1990; 161:541–548
    [Google Scholar]
  13. Knowles M., Gatzy J., Boucher R. Increased bioelectrical potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 1981; 305:1489–1495
    [Google Scholar]
  14. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 1986; 233:558–560
    [Google Scholar]
  15. Cheng P.-W., Boat T. F., Cranfill K., Yankaskas J. R., Boucher R. C. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 1989; 84:68–72
    [Google Scholar]
  16. Boat T. F., Cheng P.-W. Epithelial cell dysfunction in cystic fibrosis: implications for airways disease. Acta Paediatr Scand 1989; 363: Suppl 25–30
    [Google Scholar]
  17. Cheng S. H., Gregory R. J., Marshall J. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63:827–834
    [Google Scholar]
  18. Chevillard M., Hinnrasky J., Zahm J.-M., Plotkowski M.-C., Puchelle E. Proliferation, differentiation and ciliary beating of human respiratory ciliated cells in primary culture. Cell Tissue Res 1991; 264:49–55
    [Google Scholar]
  19. Spicer S. S., Hardin J. H., Setsen M. E. Ultrastructural visualization of sulphated complex carbohydrates in blood and epithelial cells with the high iron diamine procedure. Histochem J 1978; 10:435–452
    [Google Scholar]
  20. St George J. A., Cranz D. L., Zicker S. C., Etchison J. R., Dungworth D. L., Plopper C. G. An immunohistochemical characterization of rhesus monkey respiratory secretions using monoclonal antibodies. Am Rev Respir Dis 1985; 132:556–563
    [Google Scholar]
  21. Plotkowski M. C., Chevillard M., Pierrot D. Differential adhesion of pseudomonas aeruginosa to human epithelial cells in primary culture. J Clin Invest 1991; 87:2018–2028
    [Google Scholar]
  22. Salata R. A., Ellner J. J. Bacterial colonization of the tracheobron chial tree. Clin Chest Med 1988; 9:623–633
    [Google Scholar]
  23. Sturgess J. M. Mucus secretion and clearance in the pathogenesis of cystic fibrosis. Monogr Paed 1981; 14:60–74
    [Google Scholar]
  24. Roberts D. D. Interactions of respiratory pathogens with host cell surface and extracellular matrix components. Am J Respir Cell Mol Biol 1990; 3:181–186
    [Google Scholar]
  25. Varsano S., Basbaum C. B., Forsberg L. S., Borson D. B., Caughey G., Nadel J. A. Dog tracheal epithelial cells in culture synthesize sulfated macromolecular glycoconjugates and release them from the cell surface upon exposure to extracellular proteinases. Exp Lung Res 1987; 13:157–184
    [Google Scholar]
  26. Sajjan U., Doig P., Reisman J., Irvin R., Forstner G., Forstner J. Binding of Pseudomonas aeruginosa to CF respiratory and normal intestinal mucins. Pediatr Pulmonol 1990; 5: Suppl 241
    [Google Scholar]
  27. Komiyama K., Habbick B. F., Tumber S. K. Role of sialic acid in saliva-mediated aggregation of Pseudomonas aeruginosa to CF respiratory and normal intestinal mucins. Pediatr Pulmonol 1990; 5: Suppl 241
    [Google Scholar]
  28. Komiyama K., Habbick B. F., Tumber S. K. Whole, submandibular, and parotid saliva-mediated aggregation of Pseudomonas aeruginosa in cystic fibrosis. Infect Immun 1989; 57:1229–1304
    [Google Scholar]
  29. Kim K. C., Wasano K., Niles R. M., Schuster J. E., Stone P. J., Brody J. S. Human neutrophil elastase releases cell surface mucins from primary cultures of hamster tracheal epithelial cells. Proc Natl Acad Sci USA 1987; 84:9304–9308
    [Google Scholar]
  30. Kim K. C., Nassiri J., Brody J. S. Mechanisms of airway goblet cell mucin release: studies with cultured tracheal surface epithelial cells. Am J Respir Cell Mol Biol 1989; 1:137–143
    [Google Scholar]
  31. Wasano K., Kim K. C., Niles R. M., Brody J. Membrane differentiation markers of airway epithelial secretory cells. J Histochem Cytochem 1988; 36:167–178
    [Google Scholar]
  32. Merten M., Roiron-Lagroux D., Puchelle E., Figarella C. Cultured cystic fibrosis tracheal glandular cells show constitutive hypersecretion and hyporesponsiveness to pharmacological agonists. Pediatr Pulmonol 1990; 5: Suppl 232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-36-2-104
Loading
/content/journal/jmm/10.1099/00222615-36-2-104
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error