Inhibition by lipid A-specific monoclonal antibodies of priming of human polymorphonuclear leucocytes by endotoxin Free

Abstract

Summary

Exposure to lipopolysaccharide (LPS) primes polymorphonuclear leucocytes (PMNL) for enhanced release of oxygen metabolities after subsequent stimulation. The metabolic response of human PMNL primed with LPS and stimulated with formylmethionyl-leucyl-phenylalanine (FMLP) was measured by chemiluminescence (CL) as a parameter for endotoxic activity. Polymyxin B (PMB) and monoclonal antibodies (MAbs) with specificity for lipid A were tested for inhibition of the priming effect of Re LPS of R595, Rc LPS of J5 and smooth LPS of O111. The CL response of PMNL primed with Re LPS or Rc LPS was higher than that of PMNL primed with smooth LPS. Pre-incubation of rough or smooth LPS with PMB caused dosedependent inhibition of priming of PMNL. Two IgM MAbs, 8-2 and 26-20, which recognise different epitopes on the hydrophobic part of lipid A, also completely prevented priming of PMNL by either rough or smooth LPS. The dose-dependent inhibitory effect of both MAbs was similar to the inhibition by PMB. These results indicate that the binding of MAbs to the hydrophobic part of lipid A is important in blocking lipid A-mediated effects.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-4-233
1991-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/4/medmicro-34-4-233.html?itemId=/content/journal/jmm/10.1099/00222615-34-4-233&mimeType=html&fmt=ahah

References

  1. Ryan J. L. Microbial factors in pathogenesis: lipopoly-saccharides. In Root R. K., Sande M. A. (eds) Septic shock (Contemporary issues in infectious diseases, vol 4) New York: Churchill Livingstone; 198513–25
    [Google Scholar]
  2. Rietschel E. T., Wollenweber H.-W., Brade H. Structure and conformation of the lipid A component of lipopolysaccharides. In Proctor R. A. (ed) Handbook of endotoxin vol 1 Amsterdam: Elsevier; 1984187–220
    [Google Scholar]
  3. Baumgartner J. D., O’Brien T. X., Kirkland T. N., Glauser M. P., Ziegler E. J. Demonstration of cross-reactive antibodies to smooth gram-negative bacteria in antiserum to Escherichia coli J5. J Infect Dis 1987; 156:136–143
    [Google Scholar]
  4. Pollack M., Chia J. K. S., Koles N. L., Miller M., Guelde G. Specificity and cross-reactivity of monoclonal antibodies reactive with the core and lipid A regions of bacterial lipopolysaccharide. J Infect Dis 1989; 159:168–188
    [Google Scholar]
  5. Siber G. R., Kania S. A., Warren H. S. Cross-reactivity of rabbit antibodies to lipopolysaccharides of Escherichia coli J5 and other gram-negative bacteria. J Infect Dis 1985; 152:954–964
    [Google Scholar]
  6. Baumgartner J.-D., Glauser M. P., McCutchan J. A. Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 1985; 2:59–63
    [Google Scholar]
  7. McCabe W. R., DeMaria A., Berberich H., Johns M. A. Immunization with rough mutants of Salmonella minnesota: protective activity of IgM and IgG antibody to the R595 (Re chemotype) mutant. J Infect Dis 1988; 158:291–300
    [Google Scholar]
  8. Ziegler E. J., McCutchan J. A., Fierer J. Treatment of gramnegative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 1982; 307:1225–1230
    [Google Scholar]
  9. Calandra T., Glauser M. P., Schellekens J. Verhoef J and the Swiss-Dutch J5 Immunoglobulin Study Group. Treatment of gram-negative septic shock with human IgG antibody to Escherichia coli J5: a prospective, double-blind, randomized trial. J Infect Dis 1988; 158:312–319
    [Google Scholar]
  10. Erich T., Schellekens J., Bouter A., van Kranen J., Brouwer E., Verhoef J. Binding characteristics and cross-reactivity of three different antilipid A monoclonal antibodies. J Immunol 1989; 143:4053–1060
    [Google Scholar]
  11. Comelissen J. J., Oosterlaken T. A. M., Schellekens J. Discrimination by rabbit anti-idiotypic antibodies of two murine IgM monoclonal antibodies directed against lipid A. J Immunol Methods 1990; 130:141–147
    [Google Scholar]
  12. Fittschen C., Sandhaus R. A., Worthen G. S., Henson P. M. Bacteriallipopolysaccharide enhances chemoattractant-induced elastase secretion by human neutrophils. J Leukoc Biol 1988; 43:547–556
    [Google Scholar]
  13. Guthrie L. A., McPhail L. C., Henson P. M., Johnston R. B. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med 1984; 160:1656–1671
    [Google Scholar]
  14. Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol 1985; 1:19101–110
    [Google Scholar]
  15. Briheim G., Stendahl O., Dahlgren C. Intra- and extra-cellular events in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun 1984; 45:1–5
    [Google Scholar]
  16. Bass D. A., Olbrantz P., Szejda P., Seeds M. C., McCall C. E.Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection. J Immunol 1986; 136:860–866
    [Google Scholar]
  17. Brigham K. L., Bowers R. E., Haynes J. Increased sheep lungvascular permeability caused by Escherichia coli endotoxin. Circ Res 1982; 45:292–297
    [Google Scholar]
  18. Craig W. A., Turner J. H., Kunin C. M. Prevention of the generalized Shwartzman reaction and endotoxin lethality by polymyxin B localized in tissues. Infect Immun 1974; 10:287–292
    [Google Scholar]
  19. Galanos C., Luderitz O., Rietschel E. T., Westphal O. Biochemistry of lipids 11. Int Rev Biochem 1977; 14:290–292
    [Google Scholar]
  20. Westphal O., Luderitz O., Bister F. Uber die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 1952 Teil B 7:148–155
    [Google Scholar]
  21. Boere W. A. M, Harmsen T., Vinje J., Benaissa-Trouw B. J., Kraaijeveld C. A., Snippe H. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J Virol 1984; 52:575–582
    [Google Scholar]
  22. Chen F. M., Naeve G. S., Epstein A. L. Comparison of mono Q, superose-6, and ABx fast protein liquid chromatography for the purification of IgM monoclonal antibodies. J Chromatogr 1988; 444:153–164
    [Google Scholar]
  23. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265–75
    [Google Scholar]
  24. Remillard J. F., Gould M. C., Roslansky P. F., Novitsky T. J. Quantitation of endotoxin in products using the LAL kinetic turbidimetric assay. In Watson S. W., Lewin J., Novitsky T. J. Detection of bacterial endotoxins with the limulus amebocyte lysate test (Progress in clinical and biological research, vol 231.) New York: A. R. Liss; 1987197–210
    [Google Scholar]
  25. Kapp A., Freudenberg M., Galanos C. Induction of human granulocyte chemiluminescence by bacterial lipopolysac charides. Infect Immun 1987; 55:758–761
    [Google Scholar]
  26. Henricks P. A. J., Van der Tol M. E., Thyssen R. M. W. M., van Asbeck S., Verhoef J. Escherichia coli lipopolysaccharides diminish and enhance cell function of human polymorphonuclear leukocytes. Infect Immun 1983; 41:294–301
    [Google Scholar]
  27. Haeffner-Cavaillon N., Chaby R., Cavaillon J.-M., Szabo L. Lipopolysaccharide receptor on rabbit peritoneal macro phages. I. Binding characteristics. J Immunol 1982; 128:1950–1954
    [Google Scholar]
  28. Hampton R. Y., Golenbock D. T., Raetz C. R. H. Lipid A binding sites in membranes of macrophage tumor cells. J Biol Chem 1988; 263:14802–14807
    [Google Scholar]
  29. Lei M.-G., Morrison D. C. Specific lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol 1988; 141:996–1005
    [Google Scholar]
  30. Lei M.-G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol 1988; 141:1006–1011
    [Google Scholar]
  31. Danner R. L., Joiner K. A., Parrillo J. E. Inhibition of endotoxin-induced priming of human neutrophils by lipid X and 3- Aza-lipid X. J Clin Invest 1987; 80:605–612
    [Google Scholar]
  32. Morrison D. C., Jacobs D. M. Binding of polymyxin B to the lipid A portion of bacterial polysaccharides. Immunochem 1976; 13:813–818
    [Google Scholar]
  33. Cavaillon J.-M., Haeffner-Cavaillon N. Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human mono cytes is dependent upon the LPS origin. Mol Immunol 1986; 23:965–969
    [Google Scholar]
  34. Danner R. L., Joiner K. A., Rubin M. Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide. Antimicrob Agents Chemother 1989; 33:1428–1434
    [Google Scholar]
  35. Chia J. K. S., Pollack M., Guelde G., Koles N. L., Miller M., Evan M. E. Lipopolysaccharide (LPS)-reactive monoclonal antibodies fail to inhibit LPS-induced tumor necrosis factor secretion by mouse-derived macrophages. J Infect Dis 1989; 159:872–880
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-4-233
Loading
/content/journal/jmm/10.1099/00222615-34-4-233
Loading

Data & Media loading...

Most cited Most Cited RSS feed