1887

Abstract

Summary

The viability of four strains of two strains of and one strain of exposed to hyperimmune and pre-colostrum porcine serum was examined. Viable cell numbers (cfu/ml) of the strains and a rough strain of (CSU-P-1) decreased by 99% and 99.99%, respectively, after exposure for 1 h to porcine hyperimmune serum. In contrast, smooth strains and the strain showed no significant decrease in viable cell numbers after the same treatment. strain CSU-P-1 also showed a 99% decrease in viable cell numbers after exposure to pre-colostrum porcine serum for 1 h whereas the other strains tested showed no decrease in viable numbers under the same conditions. Heating the hyperimmune and pre-colostrum serum at 56° for 30 min resulted in the loss of bactericidal activity suggesting the involvement of complement in both systems. Analysis of silver-stained SDS-PAGE profiles of lipoplysaccharide (LPS) extracted from the bacterial cells indicated that the smooth strains of and the strain possessed high mol. wt O-side chain-like material, whereas the strains and strain CSU-P-1 did not. Gel filtration of acid-hydrolysed LPS samples indicated two distinct carbohydrate peaks for the strains with high mol. wt O-side chain-like material, whereas the other strains each yielded one distinct peak. Western-blot analysis indicated a positive reaction for anti- antibodies to the high mol. wt O-side chain-like material of all serum-resistant strains used in this study. The serum resistance of smooth strains may be an important factor in their association with wound infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-3-159
1991-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/3/medmicro-34-3-159.html?itemId=/content/journal/jmm/10.1099/00222615-34-3-159&mimeType=html&fmt=ahah

References

  1. Weiss A. A., Hewlett E. L. Virulence factors of Bordetella pertussis. Amu Rev Microbiol 1986; 40:661–686
    [Google Scholar]
  2. Linnemann C. C., Perry E. B. Bordetella parapertussis. Am J Dis Child 1977; 131:560–563
    [Google Scholar]
  3. Goodnow R. A. Biology of Bordetella bronchiseptica. Microbiol Rev 1980; 44:722–738
    [Google Scholar]
  4. Byrd L. H., Anama L., Gutkin M., Chmel H. Bordetella bronchisep tica peritonitis associated with continuous ambulatory peritoneal dialysis. J Clin Microbiol 1981; 14:232–233
    [Google Scholar]
  5. Grossman N., Schmetz M. A., Foulds J. Lipopolysaccharide size and distribution determine serum resistance in Salmonella montevideo. J Bacteriol 1987; 169:856–863
    [Google Scholar]
  6. Porat R., Johns M. A., McCabe W. R. Selective pressures and lipopolysaccharide subunits as determinants of resistance of clinical isolates of gram-negative bacilli to human serum. Infect Immun 1987; 55:320–328
    [Google Scholar]
  7. Schiller N. L., Joiner K. A. Interaction of complement with serum-sensitive and serum-resistant strains of Pseudomoms aeruginosa. Infect Immun 1986; 54:689–694
    [Google Scholar]
  8. Tomás J. M., Benedi V. J., Ciurana B., Jofre J. Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun 1986; 54:85–89
    [Google Scholar]
  9. Peppier M. S., Schrumpf M. E. Phenotypic variation and modulation in Bordetella bronchiseptica. Infect Immun 1984; 44:681–687
    [Google Scholar]
  10. Roop R. M., Veit H. P., Sinsky R. J., Veit S. P., Hewlett E. L., Komegay E. T. Virulence factors of Bordetella bronchiseptica associated with the production of infectious atrophic rhinitis and pneumonia in experimentally infected neonatal swine. Infect Immun 1986; 55:217–222
    [Google Scholar]
  11. Renshaw H. W., Gilmore R. J. Alternative and classical complement pathway activity in sera from colostrum-fed and colostrum-deprived neonatal pigs. Immunology 1980; 41:203–209
    [Google Scholar]
  12. Klaassen J. M., Bernard B. L., Digiacomo R. F. Enzyme-linked immunosorbent assay for immunoglobulin G antibody to Pasteurella multocida in rabbits. J Clin Microbiol 1985; 21:617–621
    [Google Scholar]
  13. Venier L., Rothschild M. F., Warner C. W. Measurement of serum antibody in swine vaccinated with Bordetella bronchiseptica’. comparison of agglutination and enzyme-linked immunosorbent assay methods. Am J Vet Res 1984; 45:2634–2636
    [Google Scholar]
  14. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J Biol Chem 1952; 193:265–275
    [Google Scholar]
  15. Stainer D. W., Scholte M. J. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 1970; 63:211–220
    [Google Scholar]
  16. Westphal O., Jann K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. In Whistler R. L. (ed) Methods in carbohydrate chemistry vol 5 New York: Academic Press; 196583–91
    [Google Scholar]
  17. Cross A. S., Kim K. S., Wright D. C., Sadoff J. C., Gemski P. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 1986; 154:497–503
    [Google Scholar]
  18. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacterial 1983; 154:269–277
    [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  20. Peppier M. S. Two physically and serologically distinct lipopolysaccharide profiles in strains of Bordetella pertussis and their phenotype variants. Infect Immun 1984; 43:224–232
    [Google Scholar]
  21. Schneider H., Hale T. L., Zollinger W. D., Seid R. C., Hammack C. A., Griffiss J. M. Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun 1984; 45:544–549
    [Google Scholar]
  22. Tsai C-M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115–119
    [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad of Sci USA 1979; 76:4350–4354
    [Google Scholar]
  24. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28:350–356
    [Google Scholar]
  25. Paloheimo M., Olander R. M., Runebergnyman K. Failure to convert Bordetella parapertussis to Bordetella pertussis with a pertussis phage. FEMS Microbiol Lett 1987; 41:79–83
    [Google Scholar]
  26. Frank M. M., Joiner K., Hammer C. The function of antibody and complement in the lysis of bacteria. Rev Infect Dis 1987; 9: Suppl 5S537–S545
    [Google Scholar]
  27. Tsai C-M., Mocca L. F., Frasch C. E. Characterization of the antigenic components in eight lipooligosaccharide immu-notypes of Neisseria meningitidis. In Schoolnik G. K. (ed) The pathogenic Neisseria Washington, DC: American Society for Microbiology; 1985556–561
    [Google Scholar]
  28. Wu L. H., Tsai C-M., Frasch C. E. A method for purification of bacterial R-type lipopolysaccharides (lipooligosaccharides). Anal Biochem 1987; 160:281–289
    [Google Scholar]
  29. Inzana T. J., Seifert W. E., Williams R. P. Composition and antigenic activity of the oligosaccharide moiety of Haemophilus influenzae type b lipooligosaccharide. Infect Immun 1985; 48:324–330
    [Google Scholar]
  30. Vukajlovich S. W. Antibody-independent activation of the classical pathway of human serum complement by lipid A is restricted to Re-chemotype lipopolysaccharide and purified lipid A. Infect Immun 1986; 53:480–485
    [Google Scholar]
  31. Morrison D. C., Kline L. F. Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol 1977; 118:362–368
    [Google Scholar]
  32. Tuomanen E. L., Nedelman J., Hendley J. O., Hewlett E. L. Species specificity of Bordetella adherence to human and animal ciliated respiratory epithelial cells. Infect Immun 1983; 42:692–695
    [Google Scholar]
  33. Brassinne M., Dewaele A., Gouffaux M. Intranasal infection with Bordetella bronchiseptica in gnotobiotic piglets. Res Vet Sci 1976; 20:162–166
    [Google Scholar]
  34. Miniats O. P., Johnson J. A. Experimental atrophic rhinitis in gnotobiotic pigs. Can J Comp Med 1980; 44:358–365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-3-159
Loading
/content/journal/jmm/10.1099/00222615-34-3-159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error