1887

Abstract

Summary

The susceptibility of opportunist pathogens associated with chronic granulomatous disease (CGD) to the non-oxidative killing mechanisms of neutrophils has been assessed by incubation in human neutrophil primary granule lysate. The dose and pH-dependency of killing of and differed markedly and may partly explain their virulence in CGD, in which oxygen-dependent killing mechanisms are defective. At the acid pH in CGD neutrophil phagosomes and spores were highly resistant but a less frequent pathogen in patients with CGD, was much more susceptible.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-3-129
1991-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/3/medmicro-34-3-129.html?itemId=/content/journal/jmm/10.1099/00222615-34-3-129&mimeType=html&fmt=ahah

References

  1. Klebanoff S. J. Phagocytic cells: products of oxygen metabolism. In Gallin J. I., Goldstein I. M., Snyderman R. (eds) Inflammation: basic principles and clinical correlates New York: Raven Press; 1988391–444
    [Google Scholar]
  2. Elsbach P., Weiss J. Phagocytic cells: oxygen-independent antimicrobial systems. In Gallin J. I., Goldstein I. M., Snyderman R. (eds) Inflammation: basic principles and clinical correlates New York: Raven Press; 1988445–470
    [Google Scholar]
  3. Segal A. W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest 1989; 83:1785–1793
    [Google Scholar]
  4. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 1967; 46:1422–1432
    [Google Scholar]
  5. Quie P. G., White J. G., Holmes B., Good R. A. in vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 1967; 46:668–679
    [Google Scholar]
  6. Rest R. F., Fischer S. H., Ingham Z. Z., Jones J. F. Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect Immun 1982; 36:737–744
    [Google Scholar]
  7. Segal A. W., Geisow M., Garcia R., Harper A., Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 1981; 290:406–409
    [Google Scholar]
  8. Mandell G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect Immun 1974; 9:337–341
    [Google Scholar]
  9. Okamura N., Spitznagel J. K. Outer membrane mutants of Salmonella typhimurium LT2 have lipopolysaccharide-dependent resistance to the bactericidal activity of anaerobic human neutrophils. Infect Immun 1982; 36:1086–1095
    [Google Scholar]
  10. Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane-active protein from the granules of human polymorphonuclear leucocytes. J Biol Chem 1978; 253:2664–2672
    [Google Scholar]
  11. Odeberg H., Olsson I. Mechanisms for the microbicidal activity of cationic proteins of human granulocytes. Infect Immun 1976; 14:1269–1275
    [Google Scholar]
  12. Selsted M. E., Brown D. M., DeLange R. J., Harwig S. S. L., Lehrer R. I. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem 1985; 260:4579–4584
    [Google Scholar]
  13. Ganz T., Selsted M. E., Szklarek D. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985; 76:1427–1435
    [Google Scholar]
  14. Arnold R. R., Russell J. E., Champion W. J., Brewer M., Gauthier J. J. Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 1982; 35:792–799
    [Google Scholar]
  15. Iacono V. J., MacKay B., DiRienzo S., Pollock J. J. Selective antibacterial properties of lysozyme for oral micro-organisms. Infect Immun 1980; 29:623–632
    [Google Scholar]
  16. Shafer W. M., Martin L. E., Spitznagel J. K. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infect Immun 1984; 45:29–35
    [Google Scholar]
  17. Hovde C. J., Gray B. H. Physiological effects of a bactericidal protein from human polymorphonuclear leukocytes on Pseudomonas aeruginosa. Infect Immun 1986; 52:90–95
    [Google Scholar]
  18. Janoff A., Blondin J. The effect of human granulocyte elastase on bacterial suspensions. Lab Invest 1973; 29:454–457
    [Google Scholar]
  19. Thome K. J. I., Oliver R. C., Barrett A. J. Lysis and killing of bacteria by lysosomal proteinases. Infect Immun 1976; 14:555–563
    [Google Scholar]
  20. Cech P., Lehrer R. I. Phagolysosomal pH of human neutrophils. Blood 1984; 63:88–95
    [Google Scholar]
  21. Mayer S. J., Keen P. M., Craven N., Bourne F. J. Regulation of phagolysosome pH in bovine and human neutrophils: the role of NADPH oxidase activity and an Na+/H+ antiporter. J Leukoc Biol 1989; 45:239–248
    [Google Scholar]
  22. Johnston R. B., Newman S. L. Chronic granulomatous disease. Pediatr Clin North Am; 1977; 24:365–76
    [Google Scholar]
  23. Donowitz G. R., Mandell G. L. Clinical presentation and unusual infections in chronic granulomatous disease. In Gallin J. I., Fauci A. S. (eds) Advances in host defence mechanisms, vol:3 Chronic granulomatous disease New York: Raven Press; 198355–75
    [Google Scholar]
  24. Mouy R., Fischer A., Vilmer E., Seger R., Griscelli C. Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr 1989; 114:555–560
    [Google Scholar]
  25. Segal A. W., Garcia R. C., Harper A. M., Banga J. P. Iodination by stimulated human neutrophils. Biochem J 1983; 210:215–225
    [Google Scholar]
  26. Chance B., Maehly A. C. Assay of catalases and peroxidases. Methods Enzymol 1955; 2:764–775
    [Google Scholar]
  27. Rest R. F., Cooney M. H., Spitznagel J. K. Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions. Infect Immun 1977; 16:145–151
    [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  29. Modrzakowski M. C., Paranavitana C. M. Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: role of bacterial membrane lipid. Infect Immun 1981; 32:668–674
    [Google Scholar]
  30. Craven N., Williams M. R., Field T. R., Bunch K. J., Mayer S. J., Bourne F. J. The influence of extracellular and phagolysosomal pH changes on the bactericidal activity of bovine neutrophils against Staphylococcus aureus. Vet Immunol Immunopathol 1986; 13:97–110
    [Google Scholar]
  31. Mcllvaine T. C. A buffer solution for colorimetric comparison. J Biol Chem 1921; 49:183–186
    [Google Scholar]
  32. Meynell G. G., Meynell E. Bacterial growth. In Meynell G. G., Meynell E. (eds) Theory and practice in experimental bacteriology Cambridge: Cambridge University Press; 19701–34
    [Google Scholar]
  33. Weiss J., Olsson I. Cellular and subcellular localization of the bactericidal/permeability-increasing protein of neutrophils. Blood 1987; 69:652–659
    [Google Scholar]
  34. Dilworth J. A., Mandell G. L. Adults with chronic granulomatous disease of “childhood”. Am J Med 1977; 63:233–243
    [Google Scholar]
  35. Mayer S. J., Craven N., Keen P. M., Bourne F. J. Effect of pH changes on the killing of Staphylococcus aureus and other mastitis pathogens by bovine neutrophil granule extracts. Res Vet Sci 1988; 44:324–328
    [Google Scholar]
  36. Styrt B., Klempner M. S. Effects of pH on killing of Staphylococcus aureus and Escherichia coli by constituents of the neutrophil phagolysosome. J Med Microbiol 1988; 25:101–107
    [Google Scholar]
  37. Rindler-Ludwig R., Schmalzl F., Braunsteiner H. Esterases in human neutrophil granulocytes: evidence for their protease nature. Br J Haematol 1974; 27:57–64
    [Google Scholar]
  38. Okada K. Analysis of protective mechanisms against infection by Serratia marcescens. J Clin Lab Immunol 1985; 16:183–190
    [Google Scholar]
  39. Lehrer R. I., Hanifin J., Cline M. J. Defective bactericidal activity in myeloperoxidase-deficient neutrophils. Nature 1969; 223:78–79
    [Google Scholar]
  40. Filice G. A., Beaman B. L., Krick J. A., Remington J. S. Effects of human neutrophils and monocytes on Nocardia asteroides: failure of killing despite occurrence of the oxidative metabolic burst. J Infect Dis 1980; 142:432–438
    [Google Scholar]
  41. Filice G. A. Inhibition of Nocardia asteroides by neutrophils. J Infect Dis 1985; 151:47–56
    [Google Scholar]
  42. Davis-Scibienski C. D., Beaman B. L. Interaction of Nocardia asteroides with rabbit alveolar macrophages: association of virulence, viability, ultrastructural damage, and phagosome-lysosome fusion. Infect Immun 1980; 28:610–619
    [Google Scholar]
  43. Black C. M., Paliescheskey M., Beaman B. L., Donovan R. M., Goldstein E. Acidification of phagosomes in murine macrophages: blockage by Norcardia asteroides. J Infect Dis 1986; 154:952–958
    [Google Scholar]
  44. Schaffner A., Davis C. E., Schaffner T., Markert M., Douglas H., Braude A. I. in vitro susceptibility of fungi to killing by neutrophil granulocytes discriminates between primary pathogenicity and opportunism. J Clin Invest 1986; 78:511–524
    [Google Scholar]
  45. Levitz S. M., Diamond R. D. Mechanisms of resistance of Aspergillus fumigatus conidia to killing by neutrophils in vitro. J Infect Dis 1985; 152:33–42
    [Google Scholar]
  46. Levitz S. M., Selsted M. E., Ganz T., Lehrer R. I., Diamond R. D. in vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis 1986; 154:483–489
    [Google Scholar]
  47. Schaffner A., Douglas H., Braude A. I., Davis C. E. Killing of Aspergillus spores depends on the anatomical source of the macrophage. Infect Immun 1983; 42:1109–1115
    [Google Scholar]
  48. Schaffner A., Douglas H., Braude A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. Observations on these two lines of defence in vivo and in vitro with human and mouse phagocytes. J Clin Invest 1982; 69:617–631
    [Google Scholar]
  49. Diamond R. D., Clark R. A. Damage to Aspergillus fumigates and Rhizopus oryzae hyphae by oxidative and nonoxidative microbicidal products of human neutrophils in vitro. Infect Immun 1982; 38:487–495
    [Google Scholar]
  50. Robertson M. D., Seaton A., Raeburn J. A., Milne L. J. R. Inhibition of phagocyte migration and spreading by spore diffusates of Aspergillus fumigatus. J Med Vet Mycol 1987; 25:389–396
    [Google Scholar]
  51. Lehrer R. I., Cline M. J. Interaction of Candida albicans with human leukocytes and serum. J Bacterial 1969; 98:996–1004
    [Google Scholar]
  52. Klebanoff S. J. Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes. Science 1970; 169:1095–1097
    [Google Scholar]
  53. Drazin R. E., Lehrer R. I. Fungicidal properties of a chymotrypsin-like cationic protein from human neutrophils: adsorption to Candidaparapsilosis. Infect Immun 1977; 17:382–388
    [Google Scholar]
  54. Selsted M. E., Szklarek D., Ganz T., Lehrer R. I. Activity of rabbit leukocyte peptides against Candida albicans. Infect Immun 1985; 49:202–206
    [Google Scholar]
  55. Weiss J., Beckerdite-Quagliata S., Elsbach P. Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins. Relation to binding and bacterial lipopolysaccharide structure. J Clin Invest 1980; 65:619–628
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-3-129
Loading
/content/journal/jmm/10.1099/00222615-34-3-129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error