1887

Abstract

Summary

Ciprofloxacin, unlike nalidixic acid, can kill cells in the absence of synthesis of protein of RNA. Hence, chloramphenicol or rifampicin do not abolish the bactericidal activity of ciprofloxacin against wild-type . Protein and RNA synthesis were not required for the bactericidal activity of ciprofloxacin against and mutants of . However, the addition of chloramphenicol or rifampicin abolished the bactericidal activity of ciprofloxacin against a mutant in nutrient broth. It is concluded that the ability of ciprofloxacin to kill in the absence of protein or RNA synthesis involves the A subunit of DNA gyrase.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-1-19
1991-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/1/medmicro-34-1-19.html?itemId=/content/journal/jmm/10.1099/00222615-34-1-19&mimeType=html&fmt=ahah

References

  1. Drlica K., Franco R. J. Inhibitors of DNA topoisomerases. Biochemistry 1988; 27:2254–2259
    [Google Scholar]
  2. Lewin C. S., Allen R. A., Amyes S. G. B. Potential mechanisms of resistance to the modem fluorinated 4-quinolones. J Med Microbiol 1990; 31:153–161
    [Google Scholar]
  3. Shen L. L., Mitscher L. A. Sharma PN et al., Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model. Biochemistry 1989; 28:3886–3894
    [Google Scholar]
  4. Dietz W. H., Cook T. M., Goss W. A. Mechanism of action of nalidixic acid on Escherichia coli: III. Conditions required for lethality. J Bacterial 1966; 91:768–773
    [Google Scholar]
  5. Smith J. T. Awakening the slumbering potential of the 4-quinolone antibacterials. Pharm J 1984; 233:299–305
    [Google Scholar]
  6. Smith J. T., Lewin C. S. Chemistry and mechanisms of action of the quinolone antibacterials. In Andriole V. T. (ed) The quinolones London: Academic Press; 198823–82
    [Google Scholar]
  7. Lewin C. S., Amyes S. G. B. The bactericidal activity of DR-3355, an optically active isomer of ofloxacin. J Med Microbiol 1989; 30:227–231
    [Google Scholar]
  8. Lewin C. S., Amyes S. G. B. Conditions required for the bactericidal activity of fleroxacin and pefloxacin against Escherichia coli KL16. J Med Microbiol 1990; 32:83–86
    [Google Scholar]
  9. Lewin C. S., Amyes S. G. B., Smith J. T. Bactericidal activity of enoxacin and lomefloxacin against Escherichia coli KL16. Eur.J.Clin Microbiol Infect Dis 1989; 8:731–733
    [Google Scholar]
  10. Dalhoff A. Interaction of aminoglycosides and ciprofloxacin with bacterial membranes. In Adam H, Hahn W., Opferkuch W. (eds) The influence of antibiotics on the host-parasite relationship II. Springer-Verlag Berlin and Heidelberg: 198516–27
    [Google Scholar]
  11. Hane M. W., Wood T. H. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J.Bacteriol 1969; 99:238–241
    [Google Scholar]
  12. Yamagishi J., Yoshida H., Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204:367–373
    [Google Scholar]
  13. Hrebenda J., Heleszko H., Brzostek K., Bielecki J. Mutation affecting resistance of Escherichia coli K12 to nalidixic acid. J Gen Microbiol 1985; 131:2285–2292
    [Google Scholar]
  14. Lewin C. S., Howard B. M. A., Ratcliffe N. T., Smith J. T. 4-quinolones and the SOS response. J Med Microbiol 1989; 29:139–144
    [Google Scholar]
  15. Lewin C. S., Smith J. T. Bactericidal mechanisms of ofloxacin. J Antimicrob Chemother 1988; 22: Suppl C 1–8
    [Google Scholar]
  16. Smith J. T. Frequency and expression of mutational resistance to the 4-quinolone antibacterials. Scand J Infect Dis 1986; 49: Suppl 115–123
    [Google Scholar]
  17. Barry A. L., Gardiner R. V. Packer R-R. Resistance to ten different fluoroquinolone antibiotics following in vitro exposures to nalidixic acid. Diagn Microbiol Infect Dis 1987; 6:77–79
    [Google Scholar]
  18. Fernandes P. B., Hanson C. W., Stamm J. M., Votjko C., Shipkowitz N. L. St Martin E. The frequency of in-vitro resistance development to fluoroquinolones and the use of a murine pyelonephritis model to demonstrate selection of resistance in vivo. J Antimicrob Chemother 1987; 19:449–465
    [Google Scholar]
  19. Wolfson J. S., Hooper D. C. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother 1985; 28:581–586
    [Google Scholar]
  20. Lewin C. S., Smith J. T. Conditions required for the bactericidal activity of the 4-quinolones against Serratia marcescens. J Med Microbiol (in press)
    [Google Scholar]
  21. Watanabe M., Inoue M., Mitsuhashi S. In vitro activity of amifloxacin against outer membrane mutants of the family enterobacteriaceae and frequency of spontaneous resistance. Antimicrob Agents Chemother 1989; 33:1837–1840
    [Google Scholar]
  22. Smith J. T. In-vitro and in-vivo mutation frequencies to resistance-do they correlate in the long term?. In Crumplin G. C. (ed) The 4-quinolone antibacterial agents in vitro Springer Verlag-Heidelberg 1990215–227
    [Google Scholar]
  23. Lewin C. S., Blakemore P., Drabu Y. J., Smith J. T. Loss of ciprofloxacin’s second killing action in Escherichia coli that have developed 4-quinolone resistance during therapy. J Antimicrob Chemother (in press)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-1-19
Loading
/content/journal/jmm/10.1099/00222615-34-1-19
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error