1887

Abstract

When salmonellae of serotypes Gallinarum (50 isolates) and Pullorum (36 isolates), that produce non-adhesive (type-2) fimbriae, were tested for their reactions in biochemical tests, 81 (94%) were found to belong to three distinct biochemical groups, I-III. Interaction of fI-digested DNA of both Gallinarum and Pullorum with a probe of accessory genes of type-1 fimbriation in serotype Typhimurium gave one type of Southern hybridisation pattern that was readily distinguished from that of Typhimurium strains. With a probe of the Typhimurium fimbrial subunit gene, Pullorum isolates were separated into strongly and weakly probe-reactive groups which showed restriction fragment-length polymorphism; these latter groups corresponded to biochemical groups II and III, respectively.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-32-3-145
1990-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/32/3/medmicro-32-3-145.html?itemId=/content/journal/jmm/10.1099/00222615-32-3-145&mimeType=html&fmt=ahah

References

  1. White P B. The Salmonella group. In Bensted H J., Bulloch W., Dudgeon L. eds A system of bacteriology in relation to medicine. vol 4 London: Medical Research Council, HMSO; 192986–158
    [Google Scholar]
  2. Snoeyenbos G H. Pullorum disease. In Hofstad M S. ed Diseases of poultry. , 6th edn. Iowa: Iowa State University Press; 197283–114
    [Google Scholar]
  3. Pomeroy B S. Fowl typhoid. In Hofstad M S. ed Diseases of poultry. , 6th edn. Iowa: Iowa State University Press; 1972114–135
    [Google Scholar]
  4. da Silva E N. The Salmonella gallinarum problem in central and south America. In Snoeyenbos G H. ed Proceed-ings of the international symposium on Salmonella. Philadelphia, American Association of Avian Pathol-ogists. 1985150–156
    [Google Scholar]
  5. Farmer J J., Davis B R., Hickman-Brenner F W. et al. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 1985; 2146–76
    [Google Scholar]
  6. Ewing W H. Edwards and Ewing’s identification of Entero bacteriaceae. , 4th edn. New York: Elsevier Science; 1986199
    [Google Scholar]
  7. Le Minor L., Popoff M Y. Antigenic formulas of the Salmonella serovars. , 5th edn. Paris: WHO Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur; 19881–146
    [Google Scholar]
  8. lino T., Lederberg J. Genetics of Salmonella. . In van Oye E. ed The world problem of salmonellosis. The Hague, Dr W Junk; 1964111–142
    [Google Scholar]
  9. Duguid J P., Anderson E S., Campbell I. Fimbriae and adhesive properties in salmonellae. J Path Bact 1966; 92107–138
    [Google Scholar]
  10. Old D C., Comeil I., Gibson L F., Thomson A D., Duguid J P. Fimbriation, pellicle formation and the amount of growth of salmonellas in broth. J Gen Microbiol 1968; 51:1–16
    [Google Scholar]
  11. Duguid J P., Old D C. Adhesive properties of Enterobacteri aceae. In Beachey E H. ed Bacterial adherence, receptors and recognition, series B. vol 6: London: Chapman and Hall; 1980185–217
    [Google Scholar]
  12. Crichton P B., Yakubu D E., Old D C., Clegg S. Immunological and genetic relatedness of type-1 and type-2 fimbriae in salmonellas of serotypes Gallinarum, Pullorum and Typhimurium. J Appl Bacterial 1989; 67283–291
    [Google Scholar]
  13. Clegg S., Hull S., Hull R., Pruckler J. Construction and comparison of recombinant plasmids encoding type 1 fimbriae of members of the family Enterobacteriaceae. Infect Immun 1985; 48275–279
    [Google Scholar]
  14. Miller J H. ed Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1972433
    [Google Scholar]
  15. Crichton P B., Old D C. A biotyping scheme for the subspecific discrimination of Escherichia coli . J Med Microbiol 1982; 15:233–242
    [Google Scholar]
  16. Gerlach G F., Clegg S., Ness N J., Swenson D L., Allen B L., Nichols W A. Expression of type 1 fimbriae and mannose-sensitive hemagglutinin by recombinant plasmids. Infect Immun 1989; 57:764–770
    [Google Scholar]
  17. Maniatis T., Fritsch E F., Sambrook J. Molecular cloning. A laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 19821–545
    [Google Scholar]
  18. Blaxland J D., Sojka W J., Smither A M. A study of Salm. pullorum and Salm. gallinarum strains isolated from field outbreaks of disease. J Comp Pathol 1956; 66:270–277
    [Google Scholar]
  19. Duguid J P. Antigens of type-1 fimbriae. In Stewart-TuU D E S., Davies M. eds Immunology of the bacterial cell envelope. Chichester: Wiley; 1985:301–318
    [Google Scholar]
  20. Waalen K., Sletten K., Fraholm L O., Vaisanen V., Korhonen T K. The N-terminal amino acid sequence of type-1 fimbriae (pili) of Salmonella typhimurium LT2. FEMS Microbiol Lett 1983; 16:149–151
    [Google Scholar]
  21. Lilleengen K. Typing of Salmonella gallinarum and Salmo-nella pullorum by means of bacteriophage. Acta Pathol Microbiol Scand 1952; 30:194–202
    [Google Scholar]
  22. Old D C., Payne S B. Antigens of the type-2 fimbriae of salmonellae: “cross-reacting material” (CRM) of type- 1 fimbriae. J Med Microbiol 1971; 4:215–225
    [Google Scholar]
  23. Källenius G., Mollby R., Svenson S B. et al. Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet 1981; 2:1369–1372
    [Google Scholar]
  24. van Die I., Wauben M., van Megen I. et al. Genetic manipulation of major P-fimbrial subunits and consequences for formation of fimbriae. J Bacterial 1988; 170:5870–5876
    [Google Scholar]
  25. Lindquist B L., Lebenthal E., Lee P C., Stinson M W., Merrick J M. Adherence of Salmonella typhimurium to small- intestinal enterocytes of the rat. Infect Immun 1987; 55:3044–3050
    [Google Scholar]
  26. Finlay B B., Falkow S. Virulence factors associated with Salmonella species. MicrobiolSci 1988; 5:324–328
    [Google Scholar]
  27. Liu S-L., Ezaki T., Miura H., Matsui K., Yabuuchi E. Intact motility as a Salmonella typhi invasion-related factor. Infect Immun 1988; 56:1967–1973
    [Google Scholar]
  28. Morgenroth A., Duguid J P. Demonstration of different mutational sites controlling rhamnose fermentation in FIRN and non-FIRN rha“ strains of Salmonella typhimurium: an essay in bacterial archaeology. Genet Res 1968; 11:151–169
    [Google Scholar]
  29. Duguid J P., Anderson E S., Alfredsson G A., Barker R M., Old D C. A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. J Med Microbiol 1975; 8:149–166
    [Google Scholar]
  30. Old D C., Duguid J P. Transduction of fimbriation demon strating common ancestry in FIRN strains of Salmonella typhimurium . J Gen Microbiol 1979; 112:251–259
    [Google Scholar]
  31. Old D C. Phytogeny of strains of Salmonella typhimurium . Microbiol Sci 1984; 1:69–72
    [Google Scholar]
  32. Selander R K., Caugant D A., Ochman H., Musser J M., Gilmour M N., Whittam T S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 1986; 51:873–884
    [Google Scholar]
  33. Reeves M W., Evins G M., Heiba A A., Plikaytis B D., Farmer J J. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989; 27:313–320
    [Google Scholar]
  34. Le Minor L., Veron M., Popoff M. Taxonomie des Salmonella . Arm Microbiol (Paris) 1982; 133:223–243
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-32-3-145
Loading
/content/journal/jmm/10.1099/00222615-32-3-145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error