1887

Abstract

Summary

Cell-surface hydrophobicity of (formerly was tested by aqueous two-phase partitioning and hydrophobic interaction chomato-graphy. The hydrophobicity of greatly exceeded that of subsp. and . A partition coefficient (PC) of hydrophobicity in the two-phase system was determined for PC was dependent on pH and the PC value was increased by greater than 20-fold at pH 2.5. Lithium cations increased PC, indicating a net negative surface charge. The presence of urea prevented the relative loss of hydrophobicity at raised pH. Exposure of to proteolytic enzymes reduced the ability of the bacteria to adhere to human polymorphonuclear neutrophils (PMN). These findings suggest that possesses protein-associated hydrophobic factors that are responsible for the nonopsonic adherence to PMN cell membranes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-32-2-93
1990-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/32/2/medmicro-32-2-93.html?itemId=/content/journal/jmm/10.1099/00222615-32-2-93&mimeType=html&fmt=ahah

References

  1. Goodwin C S. Duodenal ulcer, Campylobacter pylori, and the “leaking roof” concept. Lancet 1988; 2:1467–1469
    [Google Scholar]
  2. Romaniuk P J., Zoltowaska B., Trust T J. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter spp. J Bacteriol 1987; 169:2137–2141
    [Google Scholar]
  3. Goodwin C S., Armstrong J A., Chilvers T. et al. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov., as Helicobacter pylori comb. nov., and Helicobacter mustelae comb. nov. Int J Syst. Bacteriol 1989; 39:397–405
    [Google Scholar]
  4. Krakowka A., Morgan D R., Kraft W G., Leunk R D. Establishment of gastric Campylobacter pylori infection in the neonatal gnotobiotic piglet. Infect Immun 1987; 55:2789–2796
    [Google Scholar]
  5. Newell D G., Hudson M J., Baskerville A. Naturally occurring gastritis associated with Campylobacter pylori infection in the Rhesus monkey. Lancet 1987; 2:1338
    [Google Scholar]
  6. Hazell S L., Lee A., Brady L., Hennessy H. Campylobacter pyloridis and gastritis: association with intracellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J Infect Dis 1986; 153:658–663
    [Google Scholar]
  7. Ferrero R L., Hazell S L., Lee A. The urease enzymes of Campylobacter pylori and a related bacterium. J Med Microbiol 1988; 27:33–40
    [Google Scholar]
  8. Slomiany B L., Bilski J., Sarosiek J. et al. Campylobacter pylori degrades mucin and undermines gastric mucosal integrity. Biochem Biophys Res Commun 1987; 144:307–314
    [Google Scholar]
  9. Lee A., Hazell S L. Campylobacter pylori in health and disease: an ecological perspective. Microbial Ecol Health 1988; 1:1–16
    [Google Scholar]
  10. Fumarola D., Miragliotta G. G pathogenic mecha nisms of Campylobacter pylori. Eur J Clin Microbiol Infect Dis 1988; 7:579–580
    [Google Scholar]
  11. Goodwin C S., Armstrong J A., Marshall B J. Campylobacter pyloridis, gastritis and peptic ulceration. J Clin Pathol 1986; 39:353–365
    [Google Scholar]
  12. Neman-Simha V., Megraud F. In vitro model for Campylo bacter pylori adherence properties. Infect Immun 1988; 56:3329–3333
    [Google Scholar]
  13. Smyth C J., Jonsson P., Olsson E. et al. Differences in hydrophobic surface characteristics of porcine entero- pathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 1978; 22:462–472
    [Google Scholar]
  14. Jann K., Schmidt G., Blumenstock E., Vosbeck K. Escherichia coli adhesion to Saccharomyces cerevisiae and mammalian cells: role of piliation and surface hydrophobicity. Infect Immun 1981; 32:484–489
    [Google Scholar]
  15. Rosenberg M., Perry A., Bayer E A., Gutnick E L., , Rosenberg E, Ofek I. I of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect Immun 1981; 33:29–33
    [Google Scholar]
  16. Magnusson K-E., Stendahl O., Tagesson C., Edebo L., Johansson G. The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysacchar- ide to hydrophobic and ionic interaction, as studied in aqueous polymer two-phase systems. Acta Pathol Microbiol Scand Sect B 1977; 85:212–218
    [Google Scholar]
  17. van Oss C J., Gillman C F. Phagocytosis as a surface phenomenon. 1. Contact angles and phagocytosis of non-opsonized bacteria. J Reticuloendothel Soc 1972; 12:283–292
    [Google Scholar]
  18. Pruul H., Lee P C., Goodwin C S., McDonald P J. Interaction of Campylobacter pyloridis with human immune defence mechanisms. J Med Microbiol 1987; 23:233–238
    [Google Scholar]
  19. Marshall B J., McGechie D B., Rogers P A., Glancy R J. Pyloric Campylobacter infection and gastroduodenal disease. Med J Aust 1985; 142:439–444
    [Google Scholar]
  20. Albertsson P-A. In: Partition of cell particles and macrom olecules. , 2nd edn. Uppsala, Almqvist and Wiksell and New York: John Wiley & Sons; 197167–71
    [Google Scholar]
  21. Johansson G. G of proteins and micro-organisms in aqueous biphasic systems. Mol Cell Biochem 1974; 4:169–180
    [Google Scholar]
  22. Pruul H., Lewis G., McDonald P J. Enhanced susceptibility of gram-negative bacteria to phagocytic killing by human polymorphonuclear leucocytes after brief exposure to aztreonam. J Antimicrob Chemother 1988; 22:675–686
    [Google Scholar]
  23. Kabir S., Ali S. Charecterization of surface properties of Vibrio cholerae. Infect Immun 1983; 39:1048–1058
    [Google Scholar]
  24. Wood-Helie S J., Dalton H P., Shadomy S. Hydrophobic and adherence properties of Clostridium difficile. Eur J Clin Microbiol 1986; 5:441–445
    [Google Scholar]
  25. Stendahl O., Edebo L. Phagocytosis of mutants of Salmonella typhimurium by rabbit polymorphonuclear cell. Acta Pathol Microbiol Scand. Sect B 1972; 80:481–488
    [Google Scholar]
  26. Perers L., Andaker L., Edebo L., Stendahl O., Tagesson C. Association of some enterobacteria with the intestinal mucosa of mouse in relation to their partition in aqueous polymer two-phase systems. Acta Pathol Microbiol Scand Sect B 1977; 85:308–316
    [Google Scholar]
  27. Walter H., Johansson G. Partitioning in aqueous two-phase systems: an overview. Anal Biochem 1986; 155:215–242
    [Google Scholar]
  28. McCoy E C., Doyle D., Burda K., Corbeil L B., Winter A J. Superficial antigens of Campylobacter (Vibrio) fetus: characterization of an antiphagocytic component. Infect Immun 1975; 11:517–525
    [Google Scholar]
  29. Morris E J., Ganeshkumar N., McBride B C. Cell surface components of Streptococcus sanguis: relationship to aggregation, adherence and hydrophobicity. J Bacteriol 1985; 164:255–262
    [Google Scholar]
  30. Reifsteck F., Wee S., Wilkinson B J. Hydrophobicity-hydrophilicity of staphylococci. J Med Microbiol 1987; 24:65–73
    [Google Scholar]
  31. Sherman P M., Houston W L., Boedeker E C. Functional heterogeneity of intestinal Escherichia coli strains expressing type 1 somatic pili (fimbriae): assessment of bacterial adherence to intestinal membranes and surface hydrophobicity. Infect Immun 1985; 49:797–804
    [Google Scholar]
  32. Newell D G., McBride H., Pearson A D. The identification of outer membrane proteins and flagella of Campylobacter jejuni. J Gen Microbiol 1984; 130:1201–1208
    [Google Scholar]
  33. Morris A., Nicholson G. Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH. Am J Gastroenterol 1987; 82:192–199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-32-2-93
Loading
/content/journal/jmm/10.1099/00222615-32-2-93
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error