1887

Abstract

Summary

Seven clinical isolates of chloramphenicol-resistant were studied. The products of chloramphenicol inactivation by chloramphenicol acetyltransferase (CAT) were identified by high performance liquid chromatography. The sole product in is a single monoacetyl compound, whereas variants of CAT isolated from other chloramphenicol-resistant bacteria usually produce both monoacetyl and diacetyl chloramphenicol metabolites. The chloramphenicol resistance gene was found to reside on a 65-kb plasmid which, in five of the six cases studied, appeared to be integrated into the host cell chromosome.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-29-4-263
1989-08-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/29/4/medmicro-29-4-263.html?itemId=/content/journal/jmm/10.1099/00222615-29-4-263&mimeType=html&fmt=ahah

References

  1. Breeze A. S., Simpson A. M. 1982; An improved method using acetyl coenzyme A regenerationfor the enzymic inactivation of aminoglycosides prior to sterility testing. Journal of Applied Bacteriology 53:277–284
    [Google Scholar]
  2. Brent D. A., Chandrasurin P., Ragouzeos A., Hurlbert B. S., Burke J. T. 1980; Rearrangement ofchloramphenicol-3-monosuccinate. Journal of Pharmaceutical Sciences 69:906–908
    [Google Scholar]
  3. Britz M. L., Wilkinson R. G. 1978; Chloramphenicol acetyltrans-ferase of Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 14:105–111
    [Google Scholar]
  4. Burns J. L., Mendelman P. M., Levy J., Stull T. L., Smith A. L. 1985; A permeability barrier as amechanism of chloramphenicol resistance in Haemophilus influenzae. Antimicrobial Agentsand Chemotherapy 27:46–54
    [Google Scholar]
  5. Iyobe S., Kono M., Oara K., Hashimoto H., Mitsuhashi S. 1974; Relationship betweenchloramphenicol acetyltransferase activity and the number of resistance genes. AntimicrobialAgents and Chemotherapy 5:68–74
    [Google Scholar]
  6. Kado C. I., Liu S.-T. 1981; Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145:1365–1373
    [Google Scholar]
  7. Kleanthous C., Shaw W. V. 1984; Analysis of the mechanism of chloramphenicolacetyltransferase by steady state kinetics. Evidence for a ternary-complex mechanism. Biochemical Journal 223:211–220
    [Google Scholar]
  8. Leslie A. G. W., Moody P. C. E., Shaw W. V. 1988; The structure of chloramphenicolacetyltransferase at 1.75A resolution. Proceedings of the National Academy of Sciences of theUSA 85:4133–4137
    [Google Scholar]
  9. Lovering A. M., White L. O., Reeves D. S. 1986; The assay of chloramphenicol acetyltransferaseactivity by high performance liquid chromatography. Journal of Antimicrobial Chemotherapy 17:821–825
    [Google Scholar]
  10. Marques J. C., Garcia-Tornel S., Gairi J. M. 1984; Invasive infections caused by multiplyresistant Haemophilus influenzae type b. Journal of Paediatrics 104:162
    [Google Scholar]
  11. Nakagawa Y. 1981; Studies on enzymatic acetylation of chloramphenicol by chloramphenicolresistant bacteria: GC-mass analysis. Nippon Saikingaku Zasshi 36:747–755 (in Japanese)
    [Google Scholar]
  12. Nakagawa Y., Nitahara Y., Miyamura S. 1979; Kinetic studies on enzymatic acetylation ofchloramphenicol in Streptococcus faecalis. Antimicrobial Agents and Chemotherapy 16:719–723
    [Google Scholar]
  13. Okamoto S., Suzuki Y., Mise K., Nakaya R. 1967; Occurrence of chloramphenicolacetylating enzymes in various Gramnegative bacilli. Journal of Bacteriology 94:1616–1622
    [Google Scholar]
  14. Powell M., Koutsia-Carouzou C., Voutsinas D., Seymour A., Williams J. D. 1987; Resistance ofclinical isolates of Haemophilus influenzae in United Kingdom 1986. British Medical Journal 295:176–179
    [Google Scholar]
  15. Roberts M. C., Swenson C. D., Owens L. M., Smith A. L. 1980; Characterization of chloramphenicol resistant Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 18:610–615
    [Google Scholar]
  16. Shaw W. V. 1967; The enzymatic acetylation of chloramphenicol by extracts of R factor resistant Escherichia coli. Journal of Biological Chemistry 242:687–693
    [Google Scholar]
  17. Shaw W. V. 1983; Chloramphenicol acetyltransferase: enzymol-ogy and molecular biology. CRC Critical Reviews in Biochemistry 14:1–46
    [Google Scholar]
  18. Shaw W. V., Bouanchaud D. H., Goldstein F. W. 1978; Mechanism of transferable resistance to chloramphenicol in Haemophilus parainfluenzae. Antimicrobial Agents and Chemotherapy 13:326–330
    [Google Scholar]
  19. Shaw W. V., Brodsky R. F. 1968; Characterisation of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. Journal of Bacteriology 95:28–36
    [Google Scholar]
  20. Stuy J. H. 1979; Plasmid transfer in Haemophilus influenzae. Journal of Bacteriology 139:520–529
    [Google Scholar]
  21. Stuy J. H. 1980; Chromosomally integrated conjugative plasmids are common in antibiotic resistant Haemophilus influenzae. Journal of Bacteriology 142:925–930
    [Google Scholar]
  22. Suzuki Y., Okamoto S., Kono M. 1966; Basis of chloramphenicol resistance in naturallyisolated resistant staphylococci. Journal of Bacteriology 92:798–799
    [Google Scholar]
  23. van Klingeren B., van Embden J. D. A., Dessens-Kroon M. 1977; Plasmid mediatedchloramphenicol resistance in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 11:383–387
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-29-4-263
Loading
/content/journal/jmm/10.1099/00222615-29-4-263
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error