Interactions of the 4-quinolones with other antibacterials Free

Abstract

Summary

The effect of sub-inhibitory concentrations of 16 antibacterials on the bactericidal activity of the 4-quinolones nalidixic acid, ciprofloxacin and ofloxacin against KL16 in nutrient broth was investigated. Sub-inhibitory concentrations of rifampicin, clindamycin, chloramphenicol, erythromycin or tetracycline antagonised the bactericidal activity of the 4-quinolones. Conversely, all seven aminoglycosides tested enhanced the bactericidal activity of the 4-quinolones whereas the cell wall antagonists, azlocillin, mezlocillin, ceftazidime and vancomycin had no effect on the bactericidal activity of the 4-quinolones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-29-3-221
1989-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/29/3/medmicro-29-3-221.html?itemId=/content/journal/jmm/10.1099/00222615-29-3-221&mimeType=html&fmt=ahah

References

  1. Amyes S. G. B. 1982; Bactericidal activity of trimethoprim alone and in combination with sulfamethoxazole in susceptible and resistant Escherichia coli K12. Antimicrobial Agents and Chemotherapy 21:288–293
    [Google Scholar]
  2. Bustamente C. I., Drusano G. L., Wharton R. C., Wade J. C. 1987; Synergism of the combinations of imipenem plus ciprofloxacin and imipenem plus amikacin against Pseudomonas aeruginosa and other bacterial pathogens. Antimicrobial Agents and Chemotherapy 31:632–634
    [Google Scholar]
  3. Chalkley L. J., Koornhof H. J. 1985; Antimicrobial activity of ciprofloxacin against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus determined by the killing curve method: antibiotic comparisons and synergistic interactions. Antimicrobial Agents and Chemotherapy 28:331–342
    [Google Scholar]
  4. Davies G. S. R., Cohen J. 1985; In vitro study of the activity of ciprofloxacin alone and in combination against strains of Pseudomonas aeruginosa with multiple antibiotic resistance. Journal of Antimicrobial Chemotherapy 16:713–717
    [Google Scholar]
  5. Davis B. D., Chen L., Tai P. C. 1986; Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proceedings of the National Academy of Sciences of the USA 83:6164–6168
    [Google Scholar]
  6. Davis B. D. 1987; Mechanism of bactericidal action of aminoglycosides. Microbiological Reviews 51:341–350
    [Google Scholar]
  7. Dietz W. H., Cook T. M., Goss W. A. 1966; Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. Journal of Bacteriology 91:768–773
    [Google Scholar]
  8. Fu K. P., Hetzel N., Gregory F. J., Hung P. P. 1987; Therapeutic efficacy of cefpiramide-ciprofloxacin combinations in experimental Pseudomonas infections in neutropenic mice. Journal of Antimicrobial Chemotherapy 20:541–546
    [Google Scholar]
  9. Giamarellou H., Petrikkos G. 1987; Ciprofloxacin interaction with imipenem and amikacin against multiresistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 31:959–961
    [Google Scholar]
  10. Lewin C. S. 1987; Interactions of 4-quinolone antibacterials and antibiotics with gram negative and positive bacteria. Ph. D. thesis University of London;
    [Google Scholar]
  11. Matsunaga K., Yamaki H., Nishimuro T., Tanaka N. 1986; Inhibition of DNA replication initiation by aminoglycoside antibiotics. Antimicrobial Agents and Chemotherapy 30:468–474
    [Google Scholar]
  12. Neu H. C., Labthavikul P. 1982; In vitro activity of norfloxacin, a quinolone-carboxylic acid, compared with that of ß-lactams, aminoglycosides and trimethoprim. Antimicrobial Agents and Chemotherapy 22:23–27
    [Google Scholar]
  13. Smith G. M., Leyland M. J., Farrell I. D., Geddes A. M. 1988; A clinical microbiological and pharmacokinetic study of ciprofloxacin plus vancomycin as initial therapy of febrile episodes in neutropenic patients. Journal of Antimicrobial Chemotherapy 21:647–655
    [Google Scholar]
  14. Smith J. T. 1984; Awakening the slumbering potential of the 4-quinolone antibacterials. Pharmaceutical Journal 233:299–305
    [Google Scholar]
  15. Smith S. M., Eng R. H. K., Berman E. 1986; The effect of ciprofloxacin on methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 17:287–295
    [Google Scholar]
  16. Tai P. C., Davis B. D. 1985; The actions of antibiotics on the ribosome. In Greenwood D., O’Grady F. (eds) The scientific basis of antimicrobial chemotherapy Cambridge University Press; Cambridge: pp 45–69
    [Google Scholar]
  17. Tanaka N. 1982; Mechanism of action of the aminoglycoside antibiotics. In Umezawa H., Hooper I. R. (eds) Aminoglycoside antibiotics; Handbook of experimental pharmacology vol 62 Springer-Verlag, Berlin, Heidelberg; New York: pp 221–226
    [Google Scholar]
  18. Tanaka N., Matsunaga K., Yamaki H., Nishimura T. K. 1984; Inhibition of initiation of DNA synthesis by aminoglycoside antibiotics. Biochemical and Biophysical Research Communications 122:460–465
    [Google Scholar]
  19. Van der Auwera P. 1985; Interaction of gentamicin, dibekacin, netilmicin and amikacin with various penicillins, cephalosporins, minocycline and new fluoro-quinolones against Enterobacteriaceae and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 16:581–587
    [Google Scholar]
  20. Wolfson J. S., Hooper D. C. 1985; The fluoroquinolones: Structures, mechanisms of action and resistance and spectra of activity in vitro. Antimicrobial Agents and Chemotherapy 28:581–586
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-29-3-221
Loading
/content/journal/jmm/10.1099/00222615-29-3-221
Loading

Data & Media loading...

Most cited Most Cited RSS feed