1887

Abstract

Summary

Aminoglycoside-resistant variants of strain PAO1 were readily selected by culturing the organism in medium containing increasing concentrations of gentamicin, tobramycin or amikacin until the strains were growing in a concentration of drug 128-fold greater than the minimal inhibitory concentration for the sensitive parent strain. These resistant strains exhibited characteristics previously associated with the impermeability type of resistance mechanism, i.e., they grew more slowly than the parent strain, the resistance was unstable in the absence of the antibiotic, and adaptation to one of the antibiotics conferred cross-resistance to other aminoglycosides. The adapted strains grew, with minimal morphological alterations, in concentrations of the various aminoglycosides that normally produced cell envelope damage, misshapen and filamentous cell formation, and cell lysis in the sensitive strain. Neither protein H1 nor phospholipid alterations appear to play a significant role in adaptive resistance to aminoglycoside antibiotics in this model system. The acquisition of adaptive resistance to the aminoglycoside antibiotics did not confer resistance to polymyxin B, another cationic antibiotic which is thought to share binding sites within the outer membrane with the aminoglycosides.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-29-1-41
1989-05-01
2022-05-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/29/1/medmicro-29-1-41.html?itemId=/content/journal/jmm/10.1099/00222615-29-1-41&mimeType=html&fmt=ahah

References

  1. Abdel-Sayed S., Gonzalez M., Eagon R. G. 1982; The role of the outer membrane of Pseudomonas aeruginosa in the uptake of aminoglycoside antibiotics. Journal of Antimicrobial Chemotherapy 10:173–183
    [Google Scholar]
  2. Al-Asadi M. J. S., Towner K., Greenwood D. 1981; Acquired cross resistance to aminoglycosides in gentamicin-sensitive and gentamicin-resistant strains of enterobacteria. Journal of Medical Microbiology 14:171–183
    [Google Scholar]
  3. Ames B. N., Dubin D. T. 1960; The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. Journal of Biological Chemistry 235:769–775
    [Google Scholar]
  4. Bayer A. S., Norman D. C., Kim K. S. 1987; Characterization of impermeability variants of Pseudomonas aeruginosa isolated during unsuccessful therapy of experimental endocarditis. Antimicrobial Agents and Chemotherapy 31:70–75
    [Google Scholar]
  5. Brown M. R. W. 1975; The role of the cell envelope in resistance. In Brown M. R. W. (ed) Resistance of Pseudomonas aeruginosa John Wiley and Sons; London: pp 71–107
    [Google Scholar]
  6. Bryan L. E., Haraphognse R., von den Elzen H. M. 1976; Gentamicin resistance in clinical isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable-enzymatic modification. Journal of Antibiotics 29:743–753
    [Google Scholar]
  7. Bryan L. E., O’ Hara K., Wong S. 1984; Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 26:250–255
    [Google Scholar]
  8. Champlin F. R., Gilleland H. E., Conrad R. S. 1983; Conversion of phospholipids to free fatty acids in response to acquisition of polymyxin resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 24:5–9
    [Google Scholar]
  9. Clark R. B., Hu D. H., Janda J. M., Hostetter M. K. 1986; Increased susceptibility of gentamicin-resistant Pseudomonas aeruginosa to human sera. Current Microbiology 13:159–162
    [Google Scholar]
  10. Conrad R. S., Gilleland H. E. 1981; Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. Journal of Bacteriology 148:487–497
    [Google Scholar]
  11. Conrad R. S., Wulf R. G., Clay D. L. 1979; Effects of carbon sources on antibiotic resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 15:59–66
    [Google Scholar]
  12. Dimitracopoulos G., Intzes C., Papavassiliou J. 1979; Characteristics of Pseudomonas aeruginosa in relation to laboratory-induced resistance to gentamicin. Journal of Clinical Pathology 32:723–727
    [Google Scholar]
  13. Eagon R. G. 1984; The resistance characteristics of Pseudomonas. Developments in Industrial Microbiology 25:337–348
    [Google Scholar]
  14. Folch J., Lees M., Stanley G. H. S. 1957; A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226:497–509
    [Google Scholar]
  15. Galbraith L. 1984; Structural alterations in the envelope of a gentamicin-resistant rough mutant of Pseudomonas aeruginosa. Annales de Microbiologie (Institut Pasteur) 135B:121–136
    [Google Scholar]
  16. Gerber A. U., Craig W. A. 1982; Aminoglycoside-selected subpopulations of Pseudomonas aeruginosa, characterization and virulence in normal and leukopenic mice. Journal of Laboratory and Clinical Medicine 100:671–681
    [Google Scholar]
  17. Gerber A. U., Vastola A. P., Brandel J., Craig W. A. 1982; Selection of aminoglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. Journal of Infectious Diseases 146:691–697
    [Google Scholar]
  18. Gilleland H. E. 1988; Adaptive alterations in the outer membrane of gram-negative bacteria during human infection. Canadian Journal of Microbiology 34:499–502
    [Google Scholar]
  19. Gilleland H. E., Champlin F. R., Conrad R. S. 1984; Chemical alterations in cell envelopes of Pseudomonas aeruginosa upon exposure to polymyxin: a possible mechanism to explain adaptive resistance to polymyxin. Canadian Journal of Microbiology 30:869–873
    [Google Scholar]
  20. Gilleland H. E., Conrad R. S. 1982; Chemical alterations in cell envelopes of polymyxin-resistant mutants of Pseudomonas aeruginosa grown in the absence or presence of polymyxin. Antimicrobial Agents and Chemotherapy 22:1012–1016
    [Google Scholar]
  21. Gilleland H. E., Farley L. B. 1982; Adaptive resistance to polymyxin in Pseudomonas aeruginosa due to an outer membrane impermeability mechanism. Canadian Journal of Microbiology 28:830–840
    [Google Scholar]
  22. Gilleland H. E., Lyle R. D. 1979; Chemical alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. Journal of Bacteriology 138:839–845
    [Google Scholar]
  23. Gilleland H. E., Murray R. G. E. 1976; Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. Journal of Bacteriology 125:267–281
    [Google Scholar]
  24. Gilleland H. E., Stinnett J. D., Eagon R. G. 1974; Ultrastructural and chemical alteration of the cell envelopes of Pseudomonas aeruginosa, associated with resistance to ethylenediaminetetraacetate resulting from growth in a Mg2+-deficient medium. Journal of Bacteriology 117:302–311
    [Google Scholar]
  25. Hancock R. E. W. 1981; Aminoglycoside uptake and mode of action–with special reference to streptomycin and gentamicin. I. Antagonists and mutants. Journal of Antimicrobial Chemotherapy 8:249–276
    [Google Scholar]
  26. Hancock R. E. W. 1986; Intrinsic antibiotic resistance of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 18:653–656
    [Google Scholar]
  27. Hancock R. E. W., Raffle V. J., Nicas T. I. 1981; Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 19:777–785
    [Google Scholar]
  28. Hanna K., Bengis-Garber C., Kushner D. J., Kogut M., Kates M. 1984; The effect of salt concentration on the phospholipid and fatty acid composition of the moderate halophile Vibrio costicola. Canadian Journal of Microbiology 30:669–675
    [Google Scholar]
  29. Iida K., Koike M. 1974; Cell wall alterations of gram-negative bacteriaby aminoglycoside antibiotics. Antimicrobial Agents and Chemotherapy 5:95–97
    [Google Scholar]
  30. Kubesch P., Boggs J., Luciano L., Maass G., Tummler B. 1987; Interaction of polymyxin B nonapeptide with anionic phospholipids. Biochemistry 26:2139–2149
    [Google Scholar]
  31. Lorian V., Atkinson B. A. 1986; Amikacin-induced alterations in the structure of gram-negative bacilli. Diagnostic Microbiology and Infectious Disease 5:93–97
    [Google Scholar]
  32. Martin N. L., Beveridge T. J. 1986; Gentamicin interaction with Pseudomonas aeruginosa cell envelope. Antimicrobial Agents and Chemotherapy 29:1079–1087
    [Google Scholar]
  33. Mawer S. L., Greenwood D. 1977; Aminoglycoside resistance emerging during therapy. Lancet 1:749–750
    [Google Scholar]
  34. Morris G., Brown M. R. W. 1988; Novel modes of action of aminoglycoside antibiotics against Pseudomonas aeruginosa. Lancet 1:1359–1360
    [Google Scholar]
  35. Nicas T. I., Hancock R. E. W. 1980; Outer membrane protein HI of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B and gentamicin. Journal of Bacteriology 143:872–878
    [Google Scholar]
  36. Nicas T. I., Hancock R. E. W. 1983; Alteration of susceptibility to EDTA, polymyxin B and gentamicin in Pseudomonas aeruginosa by divalent cation regulation of outer membrane protein HI. Journal of General Microbiology 129:509–517
    [Google Scholar]
  37. Nilsson L., Soren L., Radberg G. 1987; Frequencies of variants resistant to different aminoglycosides in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 20:255–259
    [Google Scholar]
  38. Nishino T., Nakazawa S. 1975; Morphological alteration of Pseudomonas aeruginosa by aminoglycoside antibiotics. Journal of Electron Microscopy 24:73–86
    [Google Scholar]
  39. Olson B., Weinstein R. A., Nathan C., Chamberlin W., Kabins S. A. 1985; Occult aminoglycoside resistance in Pseudomonas aeruginosa: epidemiology and implications for therapy and control. Journal of Infectious Diseases 152:769–774
    [Google Scholar]
  40. Pechey D. T., James A. M. 1974; Surface properties of cells of gentamicin-sensitive and gentamicin-resistant strains of Pseudomonas aeruginosa. Microbios 10A: Suppl 41111–126
    [Google Scholar]
  41. Said A. A., Livermore D. M., Williams R. J. 1987; Expression of HI outer-membrane protein of Pseudomonas aeruginosa in relation to sensitivity to EDTA and polymyxin B. Journal of Medical Microbiology 24:267–274
    [Google Scholar]
  42. Shannon K., Phillips I. 1982; Mechanisms of resistance to aminoglycosides in clinical isolates. Journal of Antimicrobial Chemotherapy 9:91–102
    [Google Scholar]
  43. Stinnett J. D., Gilleland H. E., Eagon R. G. 1973; Proteins released from cell envelopes of Pseudomonas aeruginosa on exposure to ethylenediaminetetraacetate: comparison with dimethyl-formamide-extractable proteins. Journal of Bacteriology 114:399–407
    [Google Scholar]
  44. Taber H. W., Mueller J. P., Miller P. F., Arrow A. S. 1987; Bacterial uptake of aminoglycoside antibiotics. Microbiological Reviews 51:439–457
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-29-1-41
Loading
/content/journal/jmm/10.1099/00222615-29-1-41
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error