1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00221317-31-3-153
1990-03-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/31/3/medmicro-31-3-153.html?itemId=/content/journal/jmm/10.1099/00221317-31-3-153&mimeType=html&fmt=ahah

References

  1. Gellert M, Mizuuchi K, O’Dea M H, Nash H A. DNA gyrAse : An enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 1976; 73:3872–3876
    [Google Scholar]
  2. Wang J C. DNA topoisomerases. Annu Rev Biochem 1985; 54:665–497
    [Google Scholar]
  3. Drlica K, Franco R J. Inhibitors of DNA topoisomerases. Biochemistry 1988; 27:2254–2259
    [Google Scholar]
  4. Smith G R. DNA supercoiling: another level for regulating gene expression. Cell 1981; 24:593–600
    [Google Scholar]
  5. Fisher L M. DNA supercoiling and gene expression. Nature 1984; 307:686–687
    [Google Scholar]
  6. Higgins N P, Peebles C L, Sugino A, Cozzarelli N R. Purification of subunits of Escherichia coli DNA gyrAse and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 1978; 75:1773–1777
    [Google Scholar]
  7. Cozzarelli N R. DNA gyrAse and the supercoiling of DNA. Science 1980; 207:953–960
    [Google Scholar]
  8. Kirkegaard K, Wang J C. Mapping the topography of DNA wrapped around gyrAse by nucleolytic digestion and chemical probing of complexes of unique DNA sequences. Cell 1981; 23:721–729
    [Google Scholar]
  9. Sugino A, Cozzarelli N R. The intrinsic ATPase of DNA gyrAse. J Biol Chem 1980; 255:6299–6306
    [Google Scholar]
  10. Gellert M, Mizuuchi K, O’Dea M H, Itoh T, Tomizawa J I. Nalidixic acid resistance : A second genetic character involved in DNA gyrAse activity. Proc Natl Acud Sci USA 1981; 24:4772–4776
    [Google Scholar]
  11. Steck T R, Drlica K. Bacterial chromosome segregation: Evidence for DNA gyrAse involvement in decatenation. Cell 1984; 36:1081–1088
    [Google Scholar]
  12. Lesher G Y, Froelich E J, Gruett M D, Bailey J H, Brundage R P. 1,8-Naphthyridine derivatives, a new class of chemotherapeutic agents. J Med Chem 1962; 5:1063–1065
    [Google Scholar]
  13. Moorhead P J, Parry H E. Treatment of sonne dysentery. Br Med J 1965; 2:913–915
    [Google Scholar]
  14. Stamey T A, Nemoy N J, Higgins H. The clinical use of nalidixic acid; a review and some observations. Invest Uroll 1981; 24:582–592
    [Google Scholar]
  15. Phillips I, King A, Shannon K. In vitro properties of the quinolonesIn: Andriole V. The Quinolones. London: Academic Press; 198883
    [Google Scholar]
  16. Amyes S G B. The success of plasmid-encoded resistance genes in clinical bacteria. An examination of plasmidmediated ampicillin and trimethoprim resistance genes and their resistance mechanisms. J Med Microbiol 1989; 28:73–83
    [Google Scholar]
  17. Panhotra B R, Desai B, Sharma P L. Nalidixic-acidresistant Shigella dysenteriae I. Lancet 1985;; 1:763
    [Google Scholar]
  18. Munshi M H, Sack D A, Haider K, Ahmed Z V, Rahaman M M, Morshed M G. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type I. Lancet 1985; 2:419–421
    [Google Scholar]
  19. Crumplin G C. Plasmid mediated resistance to nalidixic acid and new Cquinolones. ?Lancet 1987; 2:854–855
    [Google Scholar]
  20. Levy J, Verhaegen G, van Naekten C et al. Genetic basis of nalidixic acid resistance in Shigella dysenteriae type I from Central Africa. Abstracts of the 28th Interscience Conference on Antimicrobial Agents and Chemotherapy 1988266
    [Google Scholar]
  21. Hooper D C, Wolfson J S, Ng E Y, Swartz M N. Mechanisms of action and resistance to ciprofloxacin. Am J Med 1987; 82:suppl4a12–20
    [Google Scholar]
  22. Hane M W, Wood T H. Escherichia coli K12 mutants resistant to nalidixic acid : Genetic mapping and dominance studies. J. Bacterwl l969; 99:238–241
    [Google Scholar]
  23. Smith J T. The 4-quinolone antibacterials. In: Greenwood D, O’Grady F. Scientific basis of antimicrobial chemotherapy Cambridge: Cambridge University Press; 198563
    [Google Scholar]
  24. Nakamura S, Nakamura M, Kojima T, Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob Agents Chemother 1989; 33:254–255
    [Google Scholar]
  25. Crumplin G C, Smith J T. The effect of R-factor plasmids on host-cell responses to nalidixic acid I. Increased susceptibility of nalidixic acid-sensitive hosts. J Antimicrob Chemother 1981; 7:379–388
    [Google Scholar]
  26. Weisser J, Wiedemann B. Elimination of plasmids by enoxacin and ofloxacin at near inhibitory concentrations. J. Antimicrob Chemother 1986; 18:575–583
    [Google Scholar]
  27. Michel-Briand Y, Uccelli V, Laporte J M, Plessiat P. Elimination of plasmids from Enterobacteriaceae by 4-quinolone derivatives. J Antimicrob Chemother 1986; 18:667–674
    [Google Scholar]
  28. Weisser J, Wiedemann B. Inhibition of R-plasmid transfer in Escherichia coli by 4-quinolones. Antimicrob Agents Chemother 1987; 31:531–534
    [Google Scholar]
  29. Mehtar S, Blakemore P H, Ellis K. In vivo curing of plasmids from multi-drug-resistant Serratia marcescens by ciprofloxacin. Am J Med 1987; 82:suppl4a55–57
    [Google Scholar]
  30. Lewin C S, Smith J T, Hamilton-Miller J M T, Brumfitt W. Gain of antibiotic sensitivity accompanying emergence of clinical ciprofloxacin resistance. Lancet 1988; 1:1462–1463
    [Google Scholar]
  31. Smith J T, Lewin C S. Chemistry and mechanisms of action of the quinolone antibacterialIn: Andriole V. The Quinolones. London: Academic Press; 198823
    [Google Scholar]
  32. Novick R P. Extrachromosomal inheritance in bacteria. Bacteriol Rev 1969; 33:210–235
    [Google Scholar]
  33. Uhlin B E, Nordstrom K. Preferential inhibition of plasmid replication in vivo by altered DNA gyrAse activity in Escherichia coli. J Bacteriol l985; 162:855–857
    [Google Scholar]
  34. Hooper D C, Wolfson J S, Souza K S, Tung C, McHugh G L, Swartz M N. Genetic and biochemical characterization of norfioxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1981; 24:639–644
    [Google Scholar]
  35. Aoyama H, Sato K, Kato T, Hirai K, Mitsuhashi S. Norfloxacin resistance in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 1987; 31:1640–1641
    [Google Scholar]
  36. Chapman J S, Bertasso A, , Georgopapapdakou N H. Fleroxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1989; 33:239–241
    [Google Scholar]
  37. Rella M, Haas D. Resistance of Pseudomonas aeruginosa PA0 to nalidixic acid and low levels of 8-lactam antibiotics: Mapping of chromosomal genes. Antimicrob Agents and Chemother 1982; 22:242–249
    [Google Scholar]
  38. Hirai K, , Suzue S, , Irikura T, , Iyobe S, Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 24:582–586
    [Google Scholar]
  39. Inoue Y, , Sato K, Fujii T et al. Some properties of DNA gyrAse from Pseudomonas aeruginosa PA01 and its nalidixic acid-resistant mutant. J Bacteriol 1987; 169:2322–2325
    [Google Scholar]
  40. Robillard N J., Scarpa A L. Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 1988; 32:535–539
    [Google Scholar]
  41. Setlow J K., Cabrera-Juarez E, Albritton W L, Spikes D, Mutschler A. Mutations affecting gyrAse in Haemophilus injuenzae. J Bacterioll 1981; 24:525–534
    [Google Scholar]
  42. Aoyama H, Sato K, Fuji T, Fulimaki K, Inoue M, Mitsuhashi S. Purification of Citrobacter freundii DNA gyrAse and inhibition by quinolones. Antimicrob Agents Chemother 1988; 32:104–109
    [Google Scholar]
  43. Fujimaki K, Fuji T, Aoyama H et al. Quinolone resistance in clinical isolates of Serratia marcescens. Antimicrob Agents Chemother 1989; 33:785–787
    [Google Scholar]
  44. Kato N, Miyauchi M, Muto Y, Watanabe K, Ueno K. Emergence of fluoroquinolone resistance in Bacteroides fragilis accompanied by resistance to 8-lactam antibiotics. Antimicrob Agents Chemother 1981; 32:1437–1438
    [Google Scholar]
  45. Yoshida H, Kojima T, Yamagishe J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. MGG 1988; 211:1–7
    [Google Scholar]
  46. Cullen M E., Wyke A M., Kuroda R, Fisher L M. Cloning and characterization of a DNA gyrAse gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrob Agents Chemother 1989; 33:886–894
    [Google Scholar]
  47. Horowitz D S, Wang J C. Mapping the active site tyrosine of Escherichia coli DNA gyrAse. J Biol Chem 19872625339–5344
    [Google Scholar]
  48. Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli . MGG 1986; 204:367–373
    [Google Scholar]
  49. Inoue S, Ohue T, Yamagishi J, Nakamura S, Shimizu M. Mode of incomplete cross-resistance among pipemidic, piromidic and nalidixic acids. Antimicrob Agents Chemother 1978; 14:240–245
    [Google Scholar]
  50. Smith J T. Mutational resistance to the 4-quinolone antibacterial agents. Eur J Clin Microbioll984 3:347–350
    [Google Scholar]
  51. Fu K P, Grace M E., McCloud S J., Gregory F J., Hung P P. Discrepancy between the antibacterial activities and inhibitory effects on Micrococcus luteus DNA gyrAse of 13 quinolones. Chemotherapy 1986; 24:494–498
    [Google Scholar]
  52. Zweerink M M, Edison A. Inhibition of Micrococcusluteus DNA gyrAse by norfioxacin and 10 other quinolone carboxylic acids. Antimicrob Agents Chemother 1986; 24:598–601
    [Google Scholar]
  53. Piddock L J V, Wise R. Mechanisms of resistance to quinolones and clinical perspectives. J Antimicrob Chemother 1989; 23:475–480
    [Google Scholar]
  54. Takahata M, Nishino T. DNA gyrAse of Staphylococcus aureus and inhibitory effect of quinolones on its activity. Antimicrob Agents Chemother 1988; 32:1192–1195
    [Google Scholar]
  55. Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 1986; 29:535–538
    [Google Scholar]
  56. Crumplin G C. Quinolone/ureidopenicillin cross-resistance in gram negative bacteria. Lancet 1987; 2:1519–1520
    [Google Scholar]
  57. Bedard J, Wong S, Bryan L E. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrob Agents Chemother 1987; 31:1348–1354
    [Google Scholar]
  58. Chapman J S, Georgopapadakou N H. Routesof quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 1988; 32:438–442
    [Google Scholar]
  59. Cohen S P, Hooper D C, Wolfson J S, Souza K S, McMurry L M, Levy S B. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother 1988; 32:1187–1191
    [Google Scholar]
  60. Chamberland S, Bayer A S, Schollaardt T, Wong S A, Bryan L E. Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in oitro and in oioo during experimental endocarditis. Antimicrob Agents Chemother 1989; 33:624–634
    [Google Scholar]
  61. Hooper D C, Wolfson J S, Souza K S, Ng E Y, McHugh G L, Swartz M N. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfioxacin accumulation. Antimicrob Agents Chemother 1989; 33:283–290
    [Google Scholar]
  62. Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coZi K 12. Antimicrob Agents Chemother 1986; 30:248–253
    [Google Scholar]
  63. Piddock L J V, Wijnands W J A, Wise R. Quinolone/ureidopenicillin cross-resistance. Lancet 1987; 2:907
    [Google Scholar]
  64. Sanders C C, Sanders W E, Goering R V, Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother 1984; 24:797–801
    [Google Scholar]
  65. Gutmann L, Williamson R, Moreau N et al. Crossresistance to nalidixic acid, trimethoprim and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter and Serratia. JInfect Dis 1985; 151:501–507
    [Google Scholar]
  66. Traub W H. Incomplete cross-resistance of nalidixic acid and pipemidic acid-resistant variants of Serratia marcescens against ciprofloxacin, enoxacin and norfloxacin. Chemotherapy 1985; 31:34–39
    [Google Scholar]
  67. Sanders C C, Watanakunakorn C. Emergence of resistance to beta-lactams, aminoglycosides and quinolones during combination therapy for infection due to Serratia marcescens. J Infect Dis 1986; 153:617–619
    [Google Scholar]
  68. George A M, Levy S B. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 1983; 155:541–548
    [Google Scholar]
  69. Cohen S P, McMurry L M, Levy S B. marA locus causes decreased expression of OmpF porin in multipleantibiotic-resistant (mar) mutants of Escherichia coli. J Bacteriol l988; 170:5416–5422
    [Google Scholar]
  70. Hrebenda J, Helezsko H, Brzostek K, Bieleki J. Mutation affecting resistance of Escherichia coli K12 to nalidixic acid. J Gen Microbiol l985; 24:2285–2292
    [Google Scholar]
  71. George A M, Levy S B. Amplifiable resistance to tetracycline, chloramphenicol and other antibiotics in Escherichia coli: Involvement of non-plasmid-determined efflux of tetracycline. J Bacteriol 1983155531–540
    [Google Scholar]
  72. Daikos G L, Lolans V T, Jackson G G. Alterations in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrob Agents Chemother 1981; 32:785–787
    [Google Scholar]
  73. Legakis N J, Tzouvelekis L S, Makris A, Kotsifaki H. Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprofloxacin. Antimicrob Agents Chemother 1989; 33:124–127
    [Google Scholar]
  74. Kaatz G W, Seo S M. Mechanisms of ciprofloxacin resistance in Staphylococcus aureus. Abstracts of the Annual Meeting of the American Society for Microbiology 1989A-98
    [Google Scholar]
  75. Wolfson J S, Hooper D C. The fluoroquinolones : structures, mechanisms of action and resistance and spectra of activity in vitro. Antimicrob Agents Chemother 1985; 28:581–586
    [Google Scholar]
  76. Smith J T. Frequency and expression of mutational resistance to the 4-quinolone antibacterials. Scand J Infect Dis 198649suppl115–123
    [Google Scholar]
  77. Limb D I, Dabbs D J W, Spencer R C. In vitro selection of bacteria resistant to the 4-quinolone agents. J Antimicrob Chemother 1987; 19:65–71
    [Google Scholar]
  78. Barry A L, Gardiner R V, Packer R R. Resistance to ten different fluoroquinolone antibiotics following in vitro exposures to nalidixic acid. Diagn Microbiol Infect Dis 1987; 6:77–79
    [Google Scholar]
  79. Smith J T. Awakening the slumbering potential of the 4-quinolone antibacterials. Pharm J 1984; 233:299–305
    [Google Scholar]
  80. Cullmann W, Stieglitz M, Baars B, Opferkuch W. Comparative evaluation of recently developed quinolone compounds-with a note on the frequency of resistant mutants. Chemotherapy 1985; 24:19–28
    [Google Scholar]
  81. Chin N X, Neu H C. Ciprofloxacin a quinolone carboxylic acid compound active against aerobic and anaerobic bacteria. Antimicrob Agents Chemother 1984; 24:319–326
    [Google Scholar]
  82. Sat0 K, Inoue Y, Fuji T, Aoyama H, Inoue M, Mitsuhashi S. Purification and properties of DNA gyrAse from a fluoroquinolone-resistant strain of Escherichia coli. Antimicrob Agents Chemother 1986; 24:777–780
    [Google Scholar]
  83. Glupczynski Y, Labbe M, Burette A, Delmee M, Avesani V, Bruck C. Treatment failure of ofloxacin in Campylobacterpylori infection. Lancet 1987; 1:1096
    [Google Scholar]
  84. Stone J W, Wise R, Donovan I A, Gearty J. Failure of ciprofloxacin to eradicate Campylobacter pylori from the stomach. J Antimicrob Chemother 1988; 22:92–93
    [Google Scholar]
  85. Cheng A F, Li M K W, Ling T K W, French G L. Emergence of ofloxacin-resistant Citrobacter freundi and Pseudomonas maltophilia after ofloxacin therapy. J Antimicrob Chemother 1987; 20:283–284
    [Google Scholar]
  86. Roberts C My Batten J, Hodson M E. Ciprofloxacinresistant Psdomonas. Lancet 1985; 1:1442
    [Google Scholar]
  87. Azadian B S, Bendig J W A, Samson D M. Emergence of ciprofloxacin resistant Pseudomonas aeruginosa aftercombined therapy with ciprofloxacin and amikacin. J Antimicrob Chemother 1986; 18:771
    [Google Scholar]
  88. Scully B E, Neu H C, Parry M F, Mandell W. Oral ciprofloxacin therapy of infections due to Pseudomonas aeruginosa. Lancet 1986; 1:819–822
    [Google Scholar]
  89. Wagenvoort J H T, van der Willigen A H, van Vliet H J, Michel M F, van Klingeren B. Resistance of Neisseria gonorrhoeae to enoxacin. J Antimicrob Chemother 1986; 18:429
    [Google Scholar]
  90. Humphreys H, Mulvihill E. Ciprofloxacin-resistant Staphylococcusaureus. Lancet 1985; 2:383
    [Google Scholar]
  91. Smith G M, Cashmore C, Leyland M J. Ciprofloxacinresistant staphylococci. Lancet 1985; 2:949
    [Google Scholar]
  92. Schacht P, Hullmann R. Changes of susceptibility of infecting organisms to ciprofloxacin during treatment. Abstracts of the Congress on Bacterial and Parasitic Drug Resistance Bangkok 1986109
    [Google Scholar]
  93. Kresken M, Wiedemann B. Development of resistance to nalidixic acid and the fluoroquinolones after the introduction of norlloxacin and ofloxacin. Antimicrob Agents Chemother 1988; 32:1285–1288
    [Google Scholar]
  94. Grimm H. Monitoring resistance to new quinolones and resistance patterns in the first two years following the introduction of these drugs. International Symposium on Ciprofloxacin, Dresden East Germany 1988
    [Google Scholar]
  95. Lovering A M, Bywater M J, Holt H A, Champion H M, Reeves D S. Resistance of bacterial pathogens to four aminoglycosides and six other antibacterials and prevalence of aminoglycoside modifying enzymes in 20 UK centres. J Antimicrob Chemother 1981; 24:823–840
    [Google Scholar]
  96. Tillotson G S, Herbert J J F. National surveillance of susceptibility of various antimicrobial agents including a fluoroquinolone. Abstracts of the 4th European Congress of Clinical Microbiology 1989431
    [Google Scholar]
  97. Fernandes P B, Hanson C W, Stamm J M., Vojtko C, Shipkowitz N L. St Martin E. The frequency of invitro resistance development to fluoroquinolones and the use of a murine pyelonephritis model to demonstrate selection of resistance in vivo. J Antimicrob Chemother 1987; 19:449–465
    [Google Scholar]
  98. Michea-Hamzehpour M, Auckenthaler R, Regamey P, Pechere J C. Resistance occurring after fluoroquinolone therapy of experimental Pseudomonas aeruginosa peritonitis. Antimicrob Agents Chemother 1987; 31:1803–1808
    [Google Scholar]
  99. Kaatz G W, Barriere S L, Schaberg D R, Fekety R. The emergence of resistance to ciprofloxacin during treatment of experimental Staphylococcus aureus endocarditis. J Antimicrob Chemother 1987; 20:753–758
    [Google Scholar]
  100. Maple P A C, Hamilton-Miller J M T, Brumfitt W. Worldwide antibiotic resistance in methicillin-resistant Staphylococcus aureus. Lancet 1989; 24:537–540
    [Google Scholar]
  101. Shalit I, Berger S A, Gorea A, Frimerman H. Widespread quinolone resistance among methicillin-resistant Staphyfococcus aureus isolates in a general hospital. Antimicrob Agents Chemother 1989; 24:593–594
    [Google Scholar]
  102. Ravizzola G, Pirali F, Paolucci A et al. Reduced virulence in ciprofloxacin-resistant variants of Pseudomonas aeruginosa strains. J Antimicrob Chemother 1987; 20:825–829
    [Google Scholar]
  103. Ubukata K, Itoh-yamashita N, Konno M. Cloning and expression of the noru gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1989; 33:1533–1539
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00221317-31-3-153
Loading
/content/journal/jmm/10.1099/00221317-31-3-153
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error