1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/0022-1317-51-11-903
2002-11-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/51/11/903.html?itemId=/content/journal/jmm/10.1099/0022-1317-51-11-903&mimeType=html&fmt=ahah

References

  1. Murray CJL, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997; 349:1269–1276 [CrossRef]
    [Google Scholar]
  2. Murray CJL, Lopez AD. Global mortality, disability, and contribution of risk factors.Global Burden of Disease Study. Lancet 1997; 349:1436–1442 [CrossRef]
    [Google Scholar]
  3. Garenne M, Ronsmans C, Cambell H. The magnitude of mortality from ARI in children under five years in developing countries. World Health Stat Q 1992; 45:180–191
    [Google Scholar]
  4. Graham NMH. The epidemiology of acute respiratory infections in children and adults: a global perspective. Epidemiol Rev 1990; 12:149–178
    [Google Scholar]
  5. Murray CJL, Lopez AD. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2000 Cambridge, MA: World Health Organization; 1996
    [Google Scholar]
  6. Kamiya Y. Acute respiratory infection in young children in Nairobi, Kenya. PhD thesis University of Liverpool; 2002
  7. McNamara PS, Smyth RL. The pathogenesis of respiratory syncytial virus disease in childhood. Br Med Bull 2002; 61:13–28 [CrossRef]
    [Google Scholar]
  8. van den Hoogen BG, de Jong JC, Groen J et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001; 7:719–724 [CrossRef]
    [Google Scholar]
  9. Peret TCT, Boivin G, Li Y. et al. Characterization of human metapneumoviruses isolated from patients in North America. J Infect Dis 2002; 185:1660–1663 [CrossRef]
    [Google Scholar]
  10. Nissen MD, Siebert DJ, Mackay IM, Sloots TP, Withers SJ. Evidence of human metapneumovirus in Australian children. Med J Aust 2002; 176:188
    [Google Scholar]
  11. Forgie IM, O'Neill KP, Lloyd-Evans N. et al. Aetiology of acute lower respiratory tract infections in Gambian children: II Acute lower respiratory tract infection in children ages one to nine years presenting at the hospital. Pediatr Infect Dis J 1991; 10:42–47 [CrossRef]
    [Google Scholar]
  12. Hart CA, Winstanley C. Persistent and aggressive bacteria in the lungs of cystic fibrosis children. Br Med Bull 2002; 61:81–96 [CrossRef]
    [Google Scholar]
  13. Juven T, Mertsola J, Waris M. et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 2000; 19:293–298 [CrossRef]
    [Google Scholar]
  14. Clements H, Stephenson T, Gabriel V. et al. Rationalised prescribing for community acquired pneumonia: a closed loop audit. Arch Dis Child 2000; 83:320–324 [CrossRef]
    [Google Scholar]
  15. Drummond P, Clark J, Wheeler J, Galloway A, Freeman R, Cant A. Community acquired pneumonia – a prospective UK study. Arch Dis Child 2000; 83:408–412 [CrossRef]
    [Google Scholar]
  16. Black S, Shinefield H, Fireman B. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children.Northern California Kaiser Remanente Vaccine Study Center Group. Pediatr Infect Dis J 2000; 19:187–195 [CrossRef]
    [Google Scholar]
  17. Brown PD, Lerner SA. Community-acquired pneumonia. Lancet 1998; 352:1295–1302 [CrossRef]
    [Google Scholar]
  18. Durand ML, Calderwood SB, Weber DJ. et al. Acute bacterial meningitis in adults.A review of 493 episodes. N Engl J Med 1993; 328:21–28 [CrossRef]
    [Google Scholar]
  19. Toews GB. Pulmonary clearance of infectious agents. In Pennington JE. ed Respiratory infections: diagnosis and management, 3rd edn. New York, Raven Press: 199443–53
    [Google Scholar]
  20. Bruyn GA, Zegers BJ, van Furth R. Mechanisms of host defense against infection with Streptococcus pneumoniae . Clin Infect Dis 1992; 14:251–262 [CrossRef]
    [Google Scholar]
  21. Lohmann Mathes ML, Steinmuller C, Franke UG. Pulmonary macrophages. Eur Respir J 1994; 7:1678–1689
    [Google Scholar]
  22. Stewart CC, Riedy MC, Stewart SJ. Introduction: the proliferation and differentiation of macrophages. In Zwilling BS, Eisenstein TK. eds Macrophage-pathogen interactions, 1st edn. New York: Marcel Dekker; 19943–28
    [Google Scholar]
  23. Mosser DM. Receptors on phagocytic cells involved in microbial recognition. In Zwilling BS, Eisenstein TK. eds Macrophage-pathogen interactions New York: Marcel Dekker; 199499–114
    [Google Scholar]
  24. Keane J, Balcewicz-Sablinska M, Remold HG. et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 1997; 65:298–304
    [Google Scholar]
  25. Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 1998; 66:1718–1725
    [Google Scholar]
  26. Safley SA, Ziegler HK. Antigen processing and presentation. In Zwilling BS, Eisenstein TK. eds Macrophage-pathogen interactions New York: Marcel Dekker; 1994115–130
    [Google Scholar]
  27. Nicod LP, Cochand L, Dreher D. Antigen presentation in the lung: dendritic cells and macrophages. Sarcoidosis Vasc Diffuse Lung Dis 2000; 17:246–255
    [Google Scholar]
  28. Nielsen BW, Mukaida N, Matsushima K. Macrophages as producers of chemotactic proinflammatory cytokines. In Zwilling BS, Eisenstein TK. eds Macrophage-pathogen interactions New York: Marcel Dekker; 1994131–142
    [Google Scholar]
  29. Maus U, Rosseau S, Knies U, Seeger W, Lohmeyer J. Expression of pro-inflammatory cytokines by flow-sorted alveolar macrophages in severe pneumonia. Eur Respir J 1998; 11:534–541
    [Google Scholar]
  30. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 1989; 170:499–509 [CrossRef]
    [Google Scholar]
  31. Blumenthal RL, Campbell DE, Hwang P, DeKruyff RH, Frankel LR, Umetsu DT. Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol 2001; 107:258–264 [CrossRef]
    [Google Scholar]
  32. Alonso DeVelasco E, Verheul AF, Verhoef J, Snippe H. Streptococcus pneumoniae : virulence factors, pathogenesis, and vaccines. Microbiol Rev 1995; 59:591–603
    [Google Scholar]
  33. Moxon ER. Experimental infections of animals in the study of Streptococcus pneumoniae . Rev Infect Dis 1981; 3:354–357 [CrossRef]
    [Google Scholar]
  34. Tuomanen EI, Austrian R, Masure HR. Pathogenesis of pneumococcal infection. N Engl J Med 1995; 332:1280–1284 [CrossRef]
    [Google Scholar]
  35. Stillman EG, Branch A. Experimental production of pneumococcus pneumonia in mice by the inhalation method. J Exp Med 1924; 40:733–742 [CrossRef]
    [Google Scholar]
  36. Bergeron Y, Ouellet N, Deslauriers AM, Simard M, Olivier M, Bergeron MG. Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect Immun 1998; 66:912–922
    [Google Scholar]
  37. Coonrod JD, Varble R, Jarrells MC. Species variation in the mechanism of killing of inhaled pneumococci. J Lab Clin Med 1990; 116:354–362
    [Google Scholar]
  38. Broug-Holub E, Toews GB, van Iwaarden JF. et al. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun 1997; 65:1139–1146
    [Google Scholar]
  39. Jonsson S, Musher DM, Chapman A, Goree A, Lawrence EC. Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 1985; 152:4–13 [CrossRef]
    [Google Scholar]
  40. Spiteri MA, Clarke SW, Poulter LW. Isolation of phenotypically and functionally distinct macrophage subpopulations from human bronchoalveolar lavage. Eur Respir J 1992; 5:717–726
    [Google Scholar]
  41. Crawford RM, Leiby DA, Green SJ, Nacy CA, Fortier AH, Meltzer MS. Macrophage activation: a riddle of immunological resistance. In Zwilling BS, Eisenstein TK. eds Macrophage-pathogen interactions New York: Marcel Dekker; 199429–46
    [Google Scholar]
  42. Johnson JD, Hand WL, King NL, Hughes CG. Activation of alveolar macrophages after lower respiratory tract infection. J Immunol 1975; 115:80–84
    [Google Scholar]
  43. Håkansson A, Kidd A, Wadell G, Sabharwal H, Svanborg C. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae . Infect Immun 1994; 62:2707–2714
    [Google Scholar]
  44. Terashima T, Wiggs B, English D, Hogg JC, van-Eeden SF. Phagocytosis of small carbon particles (PM10) by alveolar macrophages stimulates the release of polymorphonuclear leukocytes from bone marrow. Am J Respir Crit Care Med 1997; 155:1441–1447 [CrossRef]
    [Google Scholar]
  45. Hof DG, Repine JE, Peterson PK, Hoidal JR. Phagocytosis by human alveolar macrophages and neutrophils: qualitative differences in the opsonic requirements for uptake of Staphylococcus aureus and Streptococcus pneumoniae in vitro. Am Rev Respir Dis 1980; 121:65–71
    [Google Scholar]
  46. Hof DG, Repine JE, Giebink GS, Hoidal JR. Production of opsonins that facilitate phagocytosis of Streptococcus pneumoniae by human alveolar macrophages or neutrophils after vaccination with pneumococcal polysaccharide. Am Rev Respir Dis 1981; 124:193–195
    [Google Scholar]
  47. Gordon SB, Irving GRB, Lawson RA, Lee ME, Read RC. Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect Immun 2000; 68:2286–2293 [CrossRef]
    [Google Scholar]
  48. Jonsson S, Musher DM, Goree A, Lawrence EC. Human alveolar lining material and antibacterial defenses. Am Rev Respir Dis 1986; 133:136–140
    [Google Scholar]
  49. French N. Invasive pneumococcal disease in HIV-infected adults. J Med Microbiol 2000; 49:947–967
    [Google Scholar]
  50. Gilks CF, Ojoo SA, Ojoo JC. et al. Invasive pneumococcal disease in a cohort of predominantly HIV-1 infected female sex-workers in Nairobi, Kenya. Lancet 1996; 347:718–723 [CrossRef]
    [Google Scholar]
  51. Wahl SM, Orenstein JM, Smith PD. Macrophage functions in HIV-1 infection. In Gupta S. ed Immunology of HIV infection, 1st edn. New York: Plenum Press; 1996303–336
    [Google Scholar]
  52. Sierra Madero JG, Toossi Z, Hom DL, Finegan CK, Hoenig E, Rich EA. Relationship between load of virus in alveolar macrophages from human immunodeficiency virus type 1-infected persons, production of cytokines, and clinical status. J Infect Dis 1994; 169:18–27 [CrossRef]
    [Google Scholar]
  53. Lewin SR, Kirihara J, Sonza S, Irving L, Mills J, Crowe SM. HIV-1 DNA and mRNA concentrations are similar in peripheral blood monocytes and alveolar macrophages in HIV-1-infected individuals. AIDS 1998; 12:719–727 [CrossRef]
    [Google Scholar]
  54. Murray HW, Gellene RA, Libby DM, Rothermel CD, Rubin BY. Activation of tissue macrophages from AIDS patients: in vitro response of AIDS alveolar macrophages to lymphokines and interferon-gamma. J Immunol 1985; 135:2374–2377
    [Google Scholar]
  55. Bohnet S, Braun J, Dalhoff K. Intercellular adhesion molecule-1 (ICAM-1) is upregulated on alveolar macrophages from AIDS patients. Eur Respir J 1994; 7:229–234 [CrossRef]
    [Google Scholar]
  56. Twigg HL, Soliman DM. Role of alveolar macrophage-T cell adherence in accessory cell function in human immunodeficiency virus-infected individuals. Am J Respir Cell Mol Biol 1994; 11:138–146 [CrossRef]
    [Google Scholar]
  57. Twigg HL, Iwamoto GK, Soliman DM. Role of cytokines in alveolar macrophage accessory cell function in HIV-infected individuals. J Immunol 1992; 149:1462–1469
    [Google Scholar]
  58. Agostini C, Zambello R, Trentin L. et al. Expression of TNF receptors by T cells and membrane TNF-alpha by alveolar macrophages suggests a role for TNF-alpha in the regulation of the local immune responses in the lung of HIV-1-infected patients. J Immunol 1995; 154:2928–2938
    [Google Scholar]
  59. Twigg HL, Spain BA, Soliman DM, Bowen LK, Heidler KM, Wilkes DS. Impaired IgG production in the lungs of HIV-infected individuals. Cell Immunol 1996; 170:127–133 [CrossRef]
    [Google Scholar]
  60. Ieong MH, Reardon CC, Levitz SM, Kornfeld H. Human immunodeficiency virus type 1 infection of alveolar macrophages impairs their innate fungicidal activity. Am J Respir Crit Care Med 2000; 162:966–970 [CrossRef]
    [Google Scholar]
  61. Gordon SB, Chaponda M, Kanyanda S, Boeree MJ, Read RC, Molyneux ME. Binding and internalisation of Streptococcus pneumoniae by human alveolar macrophages from Malawian adults is not altered by HIV-1 infection. Eur Respir J 2000; (Abstract
    [Google Scholar]
  62. Musher DM, Watson DA, Nickeson D, Gyorkey F, Lahart C, Rossen RD. The effect of HIV infection on phagocytosis and killing of Staphylococcus aureus by human pulmonary alveolar macrophages. Am J Med Sci 1990; 299:158–163 [CrossRef]
    [Google Scholar]
  63. Austrian R, Gold J. Pneumococcal bacteraemia with especial reference to bacteraemic pneumococcal pneumonia. Ann Intern Med 1964; 60:759–776 [CrossRef]
    [Google Scholar]
  64. Tillet WS, Cambier MJ, McCormack JE. The treatment of lobar pneumonia and pneumococcal empyema with penicillin. Bull NY Acad Med 1994; 20:142–178
    [Google Scholar]
  65. Woodhead MA, McFarlane JT, McCracken JS, Rose DH, Finch RG. Prospective study of the aetiology and outcome of pneumonia in the community. Lancet 1987; 1:671–674
    [Google Scholar]
  66. Meehan TP, Fine MJ, Krumholz HM. et al. Quality of care, process and outcome in elderly patients with pneumonia. JAMA 1997; 278:2080–2084 [CrossRef]
    [Google Scholar]
  67. Torres A, Serra-Batlles K, Ferrer A. et al. Severe community-acquired pneumonia: epidemiology and prognostic factors. Am Rev Respir Dis 1991; 144:312–318 [CrossRef]
    [Google Scholar]
  68. Niedeman MS, Bass JB, Campbell GD. et al. American Thoracic Society.Guidelines for the initial management of adults with community-acquired pneumonia: diagnosis, assessment of severity, and initial antimicrobial therapy. Am Rev Respir Dis 1993; 148:1418–1426 [CrossRef]
    [Google Scholar]
  69. The British Thoracic Society. Guidelines for the management of community-acquired pneumonia in adults admitted to hospital. Br J Hosp Med 1993; 49:346–350
    [Google Scholar]
  70. ERS Taskforce Report. Guidelines for management of adults community-acquired lower respiratory tract infections. Eur Respir J 1998; 11:986–991 [CrossRef]
    [Google Scholar]
  71. Gleason PP, Kapoor WN, Stone RA. et al. Medical outcomes and antimicrobial costs with the use of the American Thoracic Society Guidelines for outpatients with community-acquired pneumonia. JAMA 1997; 278:32–39 [CrossRef]
    [Google Scholar]
  72. Bartlett JG, Dowell SF, Mandell LA, File TM, Musher DM, Fine MJ. Infectious Diseases Society of America: Practice Guidelines for the management of community-acquired pneumonia in adults. Clin Infect Dis 2000; 31:347–382 [CrossRef]
    [Google Scholar]
  73. Mandell LA, Marrie TJ, Grossman RF, Chow AW, Hyland RH. Canadian Guidelines for the initial management of community-acquired pneumonia: an evidence-based update by the Canadian Infectious Diseases Society and the Canadian Thoracic Society. Clin Infect Dis 2000; 31:383–421 [CrossRef]
    [Google Scholar]
  74. Wenzel RP, Edmond MB. Managing antibiotic resistance. N Engl J Med 2000; 343:1961–1963 [CrossRef]
    [Google Scholar]
  75. Guillemot D, Carbon C, Balkan B. et al. Low dosage and long duration of beta lactam: risk factors for carriage of penicillin resistant Streptococcus pneumoniae . JAMA 1998; 279:365–370 [CrossRef]
    [Google Scholar]
  76. Felmingham D, Grüneberg RN. the Alexander Project Group The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 2000; 45:191–203 [CrossRef]
    [Google Scholar]
  77. Whitney CG, Farley MM, Hadler J. et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med 2000; 343:1917–1924 [CrossRef]
    [Google Scholar]
  78. Plouffe JF, Breiman RF, Facklam RR. Bacteremia with Streptococcus pneumoniae .Implications for therapy and prevention. Franklin County Pneumonia Study Group. JAMA 1996; 275:194–198 [CrossRef]
    [Google Scholar]
  79. Pallares R, Linares J, Vadillo M. et al. Resistance to penicillin and cephalosporins and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N Engl J Med 1995; 333:474–480 [CrossRef]
    [Google Scholar]
  80. Metlay JP, Hofmann J, Cetron MS. et al. Impact of penicillin susceptibility on medical outcomes for adult patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2000; 30:520–528 [CrossRef]
    [Google Scholar]
  81. Feikin DR, Schuchat A, Kolczak M. et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health 2000; 90:223–229 [CrossRef]
    [Google Scholar]
  82. Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada.Canadian Bacterial Surveillance Network. N Engl J Med 1999; 341:233–239 [CrossRef]
    [Google Scholar]
  83. Dodge JA, Morison S, Lewis PA. et al. Cystic fibrosis in the United Kingdom 1966–88: incidence population and survival. Paediatr Perinatal Epidemiol 1993; 7:157–166 [CrossRef]
    [Google Scholar]
  84. Riordan JR, Rommens JM, Kerem B-S et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245:1066–1073 [CrossRef]
    [Google Scholar]
  85. Lyczak JB, Cannon CL, Pier GB. Lung infection associated with cystic fibrosis. Clin Microbiol Rev 2000; 15:194–222
    [Google Scholar]
  86. Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 1996; 60:539–574
    [Google Scholar]
  87. Elborn JS, Shale DJ, Britton JR. Cystic fibrosis: current survival and population estimates to the year 2000. Thorax 1991; 46:881–885 [CrossRef]
    [Google Scholar]
  88. Chace KV, Flux M, Sachdev GP. Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry 1985; 24:7334–7341 [CrossRef]
    [Google Scholar]
  89. Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996; 85:229–236 [CrossRef]
    [Google Scholar]
  90. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997; 88:553–560 [CrossRef]
    [Google Scholar]
  91. Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999; 103:1113–1117 [CrossRef]
    [Google Scholar]
  92. Bonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 1999; 104:72–78 [CrossRef]
    [Google Scholar]
  93. DiMango E, Zar HJ, Bryan K, Prince A. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 1995; 96:2204–2210 [CrossRef]
    [Google Scholar]
  94. Smyth AR, Smyth RL, Tong CYW, Hart CA, Heaf DP. Effect of respiratory virus infections including rhinovirus on clinical status in cystic fibrosis. Arch Dis Child 1995; 73:117–120 [CrossRef]
    [Google Scholar]
  95. Burns JL, Gibson RL, McNamara S. et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001; 183:444–452 [CrossRef]
    [Google Scholar]
  96. Coenye T, Goris J, Spilker P, Vandamme P, LiPuma JJ. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 2002; 40:2062–2069 [CrossRef]
    [Google Scholar]
  97. Chen W-M, Laevens S, Lee T-M. et al. Ralstonia taiwanensis sp.nov. isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [CrossRef]
    [Google Scholar]
  98. Coenye T, Falsen G, Hoste B. et al. Description of Pandoraea gen.nov. with Pandoraea apista sp.nov., Pandoraea pulmonicola sp.nov., Pandoraea pnomenusa sp.nov., Pandoraea sputorum sp.nov. and Pandoraea norimbergensis comb.nov. Int J Syst Evol Microbiol 2000; 50:887–899 [CrossRef]
    [Google Scholar]
  99. Ratjen F, Comes G, Paul K. et al. Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr Pulmonol 2001; 31:13–16 [CrossRef]
    [Google Scholar]
  100. Heinzl B, Eber E, Oberwaldner B, Haas G, Zach MS. Effects of inhaled gentamicin prophylaxis on acquisition of Pseudomonas aeruginosa in children with cystic fibrosis: a pilot study. Pediatr Pulmonol 2002; 33:32–37 [CrossRef]
    [Google Scholar]
  101. Kerem E, Corey M, Gold R, Levison H. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa . J Pediatr 1990; 116:714–719 [CrossRef]
    [Google Scholar]
  102. Nixon GM, Armstrong DS, Carzino R. et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 2001; 138:699–704 [CrossRef]
    [Google Scholar]
  103. Grathues D, Koopman U, von der Hardt H, Tummler B. Genome finger-printing of Pseudomonas aeruginosa indicates colonisation of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26:1973–1977
    [Google Scholar]
  104. Pedersen SS, Koch C, Hoiby N, Rosenthal K. An epidemic spread of multi-resistant Pseudomonas aeruginosa in a cystic fibrosis centre. J Antimicrob Chemother 1986; 17:505–516 [CrossRef]
    [Google Scholar]
  105. Cheng K, Smyth RL, Govan JRW. et al. Spread of a β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996; 348:639–642 [CrossRef]
    [Google Scholar]
  106. Jones AM, Govan JRW, Doherty CJ. et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis unit. Lancet 2001; 358:557–558 [CrossRef]
    [Google Scholar]
  107. Armstrong DS, Nixon G, Carlin J, Carzino R, Grimwood K. Long-term outbreak of transmissible virulent strain of Pseudomonas aeruginosa in a paediatric cystic fibrosis clinic. Pediatr Pulmonol 2000; 20: Suppl: 285 (Abstract A393).
    [Google Scholar]
  108. McCallum S, Corkill J, Gallagher M, Ledson MJ, Hart CA, Walshaw MJ. Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised with P. aeruginosa . Lancet 2001; 358:558–560 [CrossRef]
    [Google Scholar]
  109. McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 2002; 57:559–560 [CrossRef]
    [Google Scholar]
  110. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002; 416:740–743 [CrossRef]
    [Google Scholar]
  111. Singh PK, Schaefer RL, Parsek MR, Moringer TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407:762–764 [CrossRef]
    [Google Scholar]
  112. Oliver A, Cantón R, Campo R, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000; 288:1251–1253 [CrossRef]
    [Google Scholar]
  113. Jansen HJ, Hart CA, Rhodes JM, Saunders JR, Smalley JW. A novel mucin-sulphatase activity found in Burkholderia cepacia and Pseudomonas aeruginosa . J Med Microbiol 1999; 48:551–557 [CrossRef]
    [Google Scholar]
  114. Liang X, Pharm X-QT, Olsen MV, Lory S. Identification of genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa . J Bacteriol 2001; 183:843–853 [CrossRef]
    [Google Scholar]
  115. Epelman S, Bruno TF, Neely GG, Woods DE, Mody CH. Pseudomonas aeruginosa exoenzyme S induces transcriptional expression of proinflammatory cytokines and chemokines. Infect Immun 2000; 68:4811–4814 [CrossRef]
    [Google Scholar]
  116. Vandamme P, Henry D, Coenye T. et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia , two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Microbiol 2002; 33:143–149 [CrossRef]
    [Google Scholar]
  117. LiPuma JJ, Dasen SE, Nielsen DW, Stern RC, Stull TC. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990; 336:1094–1096 [CrossRef]
    [Google Scholar]
  118. Clode FE, Kaufmann ME, Malnick H, Pitt TL. Distribution of genes encoding putative transmissibility factors among epidemic and non-epidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol 2000; 38:1763–1766
    [Google Scholar]
  119. Ledson MJ, Gallagher MJ, Corkill JE, Hart CA, Walshaw MJ. Cross-infection between cystic fibrosis patients colonised with Burkholderia cepacia . Thorax 1998; 53:432–436 [CrossRef]
    [Google Scholar]
  120. Ledson MJ, Gallagher MJ, Walshaw MJ. Chronic Burkholderia cepacia bronchiectasis in a non-cystic fibrosis individual. Thorax 1998; 53:430–432 [CrossRef]
    [Google Scholar]
  121. Berriatua E, Ziluaga I, Miguel-Virto C. et al. Outbreak of sub-clinical mastitis in a flock of dairy sheep associated with Burkholderia cepacia complex infection. J Clin Microbiol 2001; 39:990–994 [CrossRef]
    [Google Scholar]
  122. Li Puma JJ, Spilker T, Coenye T, Gonzalez CF. An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 2002; 359:2002–2003 [CrossRef]
    [Google Scholar]
  123. Govan JRW, Hughes JE, Vandamme P. Burkholderia cepacia : medical, taxonomic and ecological issues. J Med Microbiol 1996; 45:395–407 [CrossRef]
    [Google Scholar]
  124. Sajjan US, Sun L, Goldstein R, Forstner J. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia : nucleotide sequence of the cbl A major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol 1995; 177:1030–1038
    [Google Scholar]
  125. Sajjan U, Wu Y, Kent G, Forstner J. Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J Med Microbiol 2000; 49:875–885
    [Google Scholar]
  126. Sajjan U, Ackerley C, Forstner J. Interaction of cbl A/adhesin positive Burkholderia cepacia with squamous epithelium. Cell Microbiol 2002; 4:73–86 [CrossRef]
    [Google Scholar]
  127. Baird RM, Brown H, Smith AU, Watson ML. Burkholderia cepacia is resistant to the antimicrobial activity of airway epithelial cells. Immunopharmacology 1999; 44:267–272 [CrossRef]
    [Google Scholar]
  128. Zughaier SM, Ryley HC, Jackson SK. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect Immun 1999; 67:908–913
    [Google Scholar]
  129. Smalley JW, Charalabous P, Birss AJ, Hart CA. Detection of heme-binding proteins in epidemic strains of Burkholderia cepacia . Clin Diagn Lab Immunol 2001; 8:509–514
    [Google Scholar]
  130. Hutchinson ML, Poxton IR, Govan JRW. Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 1998; 66:2033–2039
    [Google Scholar]
  131. Cerantola S, Bounery J, Segonds C, Marty N, Montrozier H. Exopolysaccharide production by mucoid and non-mucoid strains of Burkholderia cepacia . FEMS Microbiol Lett 2000; 185:243–246 [CrossRef]
    [Google Scholar]
  132. Cieri MV, Meyer-Hamblett N, Griffiths A, Burns JL. Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 2002; 70:1081–1086 [CrossRef]
    [Google Scholar]
  133. Parsons YN, Glendinning MJ, Thornton V, Hales BA, Hart CA, Winstanley C. A putative type III secretion gene cluster is widely distributed in Burkholderia cepacia complex but absent from genomovar I. FEMS Microbiol Lett 2001; 203:103–108 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/0022-1317-51-11-903
Loading
/content/journal/jmm/10.1099/0022-1317-51-11-903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error