- Volume 99, Issue 3, 2018
Volume 99, Issue 3, 2018
- Editorial
-
- Review
-
-
-
A clash of ideas – the varying uses of the ‘species’ term in virology and their utility for classifying viruses in metagenomic datasets
More LessSpecies definitions of viruses are frequently descriptive, with assignments often being based on their disease manifestations, host range, geographical distribution and transmission routes. This method of categorizing viruses has recently been challenged by technology advances, such as high-throughput sequencing. These have dramatically increased knowledge of viral diversity in the wider environment that dwarfs the current catalogue of viruses classified by the International Committee for the Taxonomy of Viruses (ICTV). However, because such viruses are known only from their sequences without phenotypic information, it is unclear how they might be classified consistently with much of the existing taxonomy framework. This difficulty exposes deeper incompatibilities in how species are conceptualized. The original species assignments based on disease or other biological attributes were primarily descriptive, similar to principles used elsewhere in biology for species taxonomies. In contrast, purely sequence-based classifications rely on genetic metrics such as divergence thresholds that include or exclude viruses in individual species categories. These different approaches bring different preconceptions about the nature of a virus species, the former being more easily conceptualized as a category with a part/whole relationship of individuals and species, while species defined by divergence thresholds or other genetic metrics are essentially logically defined groups with specific inclusion and exclusion criteria. While descriptive species definitions match our intuitive division of viruses into natural kinds, rules-based genetic classifications are required for viruses known from sequence alone, whose incorporation into the ICTV taxonomy is essential if it is to represent the true diversity of viruses in nature.
-
-
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV Virus Taxonomy Profile: Ampullaviridae
More LessThe family Ampullaviridae includes viruses with linear dsDNA genomes that replicate in hyperthermophilic archaea from the genus Acidianus. The virions have a unique champagne bottle-shaped morphology and consist of a nucleoprotein filament condensed into a cone-shaped core, which is encased by an envelope, with the base of the ‘bottle’ decorated with a ring of 20 filaments. Genome replication is presumably carried out by the virus-encoded protein-primed family B DNA polymerase. The bottle-shaped morphology is unprecedented among viruses of bacteria and eukaryotes and represents a group of archaea-specific virion morphotypes. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ampullaviridae, which is available at www.ictv.global/report/ampullaviridae.
-
-
-
-
ICTV Virus Taxonomy Profile: Guttaviridae
More LessGuttaviridae is a family of enveloped viruses infecting hyperthermophilic archaea. The virions are ovoid or droplet-shaped, with a diameter of 55–80 nm and a length of 75–130 nm. The genome is a circular dsDNA molecule of around 14–20 kbp. The droplet-shaped morphology is unprecedented among viruses of bacteria and eukaryotes and represents a group of archaea-specific virion morphotypes. The family includes two genera, Alphaguttavirus and Betaguttavirus, each with a single species. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Guttaviridae, which is available at www.ictv.global/report/guttaviridae.
-
- Animal
-
- Negative-strand RNA Viruses
-
-
An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness
The resistance of influenza viruses to neuraminidase (NA) inhibitors (NAIs; i.e. oseltamivir, zanamivir, peramivir and laninamivir) can be associated with several NA substitutions, with differing effects on viral fitness. To identify novel molecular markers conferring multi-NAI resistance, the NA gene of oseltamivir-resistant (H275Y, N1 numbering) 2009 pandemic influenza [A(H1N1)pdm09] virus was enriched with random mutations. This randomly mutated viral library was propagated in Madin–Darby canine kidney (MDCK) cells under zanamivir pressure and gave rise to additional changes within NA, including an I436N substitution located outside the NA enzyme active site. We generated four recombinant A(H1N1)pdm09 viruses containing either wild-type NA or NA with single (I436N or H275Y) or double (H275Y-I436N) substitutions. The double H275Y-I436N mutation significantly reduced inhibition by oseltamivir and peramivir and reduced inhibition by zanamivir and laninamivir. I436N alone reduced inhibition by all NAIs, suggesting that it is a multi-NAI resistance marker. I436N did not affect viral fitness in vitro or in a murine model; however, H275Y and I436N together had a negative impact on viral fitness. Further, I436N alone did not have an appreciable impact on viral replication in the upper respiratory tract or transmissibility in ferrets. However, the rg-H275Y-I436N double mutant transmitted less efficiently than either single mutant via the direct contact and respiratory droplet routes in ferrets. Overall, these results highlight the usefulness of a random mutagenesis approach for identifying potential molecular markers of resistance and the importance of I436N NA substitution in A(H1N1)pdm09 virus as a marker for multi-NAI resistance.
-
-
-
Major histocompatibility complex I of swine respiratory cells presents conserved regions of influenza proteins
More LessInfluenza A virus in swine (IAV-S) is a prevalent respiratory pathogen in pigs that has deleterious consequences to animal and human health. Pigs represent an important reservoir for influenza and potential mixing vessel for novel gene reassortments. Despite the central role of pigs in recent influenza outbreaks, much remains unknown about the impact of swine immunity on IAV-S transmission, pathogenesis, and evolution. An incomplete understanding of interactions between the porcine immune system and IAV-S has hindered development of new diagnostic tools and vaccines. In order to address this gap in knowledge, we identified swine leukocyte antigen (SLA) restricted IAV-S peptides presented by porcine airway epithelial cells using an immunoproteomics approach. The majority of MHC-associated peptides belonged to matrix 1, nucleoprotein and nonstructural 1 proteins. Future investigation of the potential cross-reactive nature of these peptides is needed to confirm antigen recognition by cytotoxic T lymphocytes and their utility as vaccine candidates.
-
- Positive-strand RNA Viruses
-
-
Death and gastrointestinal bleeding complicate encephalomyelitis in mice with delayed appearance of CNS IgM after intranasal alphavirus infection
More LessCentral nervous system (CNS) infection of C57BL/6 mice with the TE strain of Sindbis virus (SINV) provides a valuable animal model for studying the pathogenesis of alphavirus encephalomyelitis. While SINV TE inoculated intracranially causes little mortality, 20–30 % of mice inoculated intranasally (IN) died 8 to 11 days after infection, the period during which immune cells typically infiltrate the brain and clear infectious virus. To examine the mechanism behind the mortality, mice infected IN with SINV TE were monitored for evidence of neurological disease, and those with signs of severe disease (moribund) were sacrificed and tissues collected. Mice showing the usual mild signs of encephalomyelitis were concurrently sacrificed to serve as time-matched controls (sick). Sixty-eight per cent of the moribund mice, but none of the sick mice, showed upper gastrointestinal bleeding due to gastric ulceration. Clinical disease and gastrointestinal pathology could not be attributed to direct viral infection of tissues outside of the CNS, and brain pathology and inflammation were comparable in sick and moribund mice. However, more SINV antigen was present in the brains of moribund mice, and clearance of infectious virus from the CNS was delayed compared to sick mice. Lower levels of SINV-specific IgM and fewer B220+ B cells were present in the brains of moribund mice compared to sick mice, despite similar levels of antiviral IgM and IgG in serum. These findings highlight the importance of the local antibody response in determining the outcome of viral encephalomyelitis and offer a model system for understanding individual variation in this response.
-
- Small DNA Viruses
-
-
Chicken anaemia virus evades host immune responses in transformed lymphocytes
Chicken anaemia virus (CAV) is a lymphotropic virus that causes anaemia and immunosuppression in chickens. Previously, we proposed that CAV evades host antiviral responses in vivo by disrupting T-cell signalling, but the precise cellular targets and modes of action remain elusive. In this study, we examined gene expression in Marek’s disease virus-transformed chicken T-cell line MSB-1 after infection with CAV using both a custom 5K immune-focused microarray and quantitative real-time PCR at 24, 48 and 72 h post-infection. The data demonstrate an intricate equilibrium between CAV and the host gene expression, displaying subtle but significant modulation of transcripts involved in the T-cell, inflammation and NF-κB signalling cascades. CAV efficiently blocked the induction of type-I interferons and interferon-stimulated genes at 72 h. The cell expression pattern implies that CAV subverts host antiviral responses and that the transformed environment of MSB-1 cells offers an opportunistic advantage for virus growth.
-
-
-
hnRNP G prevents inclusion on the HPV16 L1 mRNAs of the central exon between splice sites SA3358 and SD3632
More LessHPV16 late L1 mRNAs encode a short central exon that is located between HPV16 3′-splice site SA3358 and HPV16 5′-splice site SD3632. While SA3358 is used to produce both HPV16 early mRNAs encoding the E6 and E7 oncogenes, and late mRNAs encoding E4, L1 and L2, SD3632 is used exclusively to produce late L1 mRNA. We have previously identified an 8-nucleotide regulatory RNA element that is required for inclusion of the exon between SA3358 and SD3632 to produce L1 mRNAs at the expense of mRNAs polyadenylated at the HPV16 early polyadenylation signal pAE. Here we show that this HPV16 8-nucleotide splicing enhancer interacts with hnRNP G. Binding of hnRNP G to this element prevents inclusion of the exon between SA3358 and SD3632 on the HPV16 late L1 mRNAs. We concluded that hnRNP G has a splicing inhibitory role and that hnRNP G can control HPV16 mRNA splicing.
-
-
-
The contribution of SP100 to cottontail rabbit papillomavirus transcription and replication
More LessSP100 proteins are components of nuclear domain 10 structures and have been implicated as inhibitors of human papillomavirus (HPV) replication. In this study, we have addressed the role of SP100 in tumour formation by the cottontail rabbit (Sylvilagus floridanus) papillomavirus (CRPV or SfPV1) in a rabbit model. Tissue culture studies using rabbit keratinocyte lines indicated that rabbit SP100 is an interferon-beta-inducible gene similar to its human counterpart. Stable knockdown of SP100 by shRNA in a cell line harbouring CRPV genomes resulted in a decrease of viral early transcripts. In contrast, infection of domestic rabbits with recombinant CRPV genomes expressing short hairpin (sh)RNAs directed against SP100 did not reveal changes in tumour formation rate, tumour size or early viral transcript levels. However, late viral transcript levels and viral genome copies were consistently lower in CRPV/shSP100-induced tumours than in the control, but these differences did not reach statistical significance. In summary, this study suggests that rabbit SP100 is not an inhibitor but an activator of CRPV replication and transcription.
-
- Large DNA Viruses
-
-
Specific transcriptional and post-transcriptional regulation of the major immediate early ICP4 gene of GaHV-2 during the lytic, latent and reactivation phases
Transcriptional and post-transcriptional mechanisms are involved in the switch between the lytic, latent and reactivation phases of the viral cycle in herpesviruses. During the productive phases, herpesvirus gene expression is characterized by a temporally regulated cascade of immediate early (IE), early (E) and late (L) genes. In alphaherpesviruses, the major product of the IE ICP4 gene is a transcriptional regulator that initiates the cascade of gene expression that is essential for viral replication. In this study, we redefine the infected cell protein 4 (ICP4) gene of the oncogenic Marek’s disease virus (MDV or gallid herpesvirus 2) as a 9438 nt gene ended with four alternative poly(A) signals and controlled by two alternative promoters containing essentially ubiquitous functional response elements (GC, TATA and CCAAT boxes). The distal promoter is associated with ICP4 gene expression during the lytic and the latent phases, whereas the proximal promoter is associated with the expression of this gene during the reactivation phase. Both promoters are regulated by DNA methylation during the viral cycle and are hypermethylated during latency. Transcript analyses showed ICP4 to consist of three exons and two introns, the alternative splicing of which is associated with five predicted nested ICP4ORFs. We show that the ICP4 gene is highly and specifically regulated by transcriptional and post-transcriptional mechanisms during the three phases of the GaHV-2 viral cycle, with a clear difference in expression between the lytic phase and reactivation from latency in our model.
-
-
-
SUMOylation of IE2p86 is required for efficient autorepression of the human cytomegalovirus major immediate-early promoter
More LessThe human cytomegalovirus (HCMV) IE2p86 protein is pivotal for coordinated regulation of viral gene expression. Besides functioning as a promiscuous transactivator, IE2p86 is also known to negatively regulate its own transcription. This occurs via direct binding of IE2p86 to a 14-bp palindromic DNA element located between the TATA box and the transcription start site of the major immediate-early promoter (MIEP), which is referred to as the cis repression signal (CRS). However, the exact mechanism of IE2p86-based autorepression is still unclear. By testing a series of IE2p86 mutants in transient expression assays, we found that not only did a DNA binding-deficient mutant of IE2p86 fail to repress the MIEP, but SUMOylation-negative mutants also failed to repress it. This finding was further supported by infection studies with primary fibroblasts harbouring a MIEP-driven transgene as a reporter. Here, we observed that a recombinant HCMV expressing SUMOylation-negative IE2p86 was defective in transgene downregulation, in contrast to wild-type HCMV. Interestingly, however, a double-mutant virus in which both the SUMO acceptor sites and the SUMO interaction motif (SIM) of IE2p86 were inactivated regained the ability to silence the MIEP. This correlated with increased expression levels of the IE2 isoforms IE2p40 and IE2p60, suggesting that these late proteins may contribute to MIEP suppression, thus compensating for the loss of IE2p86 SUMOylation. In summary, our results show that autorepression of the MIEP is not only regulated by late isoforms of IE2, but also depends on posttranslational SUMO modification, revealing a novel mechanism to fine-tune the expression of this important viral gene region.
-
- Retroviruses
-
-
Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India
Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as ‘elite neutralizers’, and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.
-
- Plant
-
- RNA Virus
-
-
A point-mutation of Coleus blumei viroid 1 switches the potential to transmit through seed
More LessViroids are highly structured, single-stranded, non-protein-coding circular RNA pathogens that replicate, spread and elicit severe to mild disease symptoms in sensitive host species. The functions of viroids are thought to be due to a molecular element (or elements) embedded within the small RNA molecule that recruits the host factors responsible for transcription, RNA transportation and regulation of gene expression. Coleus blumei viroid 1 (CbVd-1) is distributed worldwide and is known for its characteristic property of having an extremely high frequency of seed transmission. During our analysis of CbVd-1 seed transmission, two variants, CbVd-1/25A and CbVd-1/25UU, were shown to have distinct seed-transmission frequencies: 30 and 0 %, respectively. Seven infectious dimeric forms of CbVd-1 cDNA clones were created based on the sequences of CbVd-1/25A,CbVd-1/25UU and an additional five variants with unique loop structures in other portion(s) of the molecule, and in vitro transcripts were inoculated into viroid-free coleus seedlings. All seven CbVd-1 variants showed infectivity. Nucleotide sequence analysis of the progeny revealed that four of the five additional mutants changed to either CbVd-1/25A or CbVd-1/25UU, while, CbVd-1/25A, CbVd-1/25UU and one of the five additional mutants (CbVd-1/I2) replicated stably. As expected, CbVd-1/25A and CbVd-1/I2 were transmitted through seeds, but CbVd-1/25UU was not. CbVd-1/25A and CbVd-1/I2 shared the same nucleotide at position 25 in loop five but are different from CbVd-1/25UU at that position. Therefore, nucleotide 25 in loop five was identified as a determinant for seed transmission of CbVd-1.
-
- Prokaryotic Viruses
-
-
-
Two novel thermally resistant endolysins encoded by pseudo T-even bacteriophages RB43 and RB49
Identification and cloning of genes as well as biochemical characterization of the gene products were carried out for two novel endolysins of pseudo T-even lytic bacteriophages RB43 and RB49, which represent different myovirus groups of the subfamily Tevenvirinae. Genes RB43ORF159c and RB49р102 were cloned in E. coli cells, and their products were purified to electrophoretic homogeneity with an up to 80 % yield of total activity. In respect to substrate specificity, both enzymes were found to be lytic l-alanoyl-d-glutamate peptidases belonging to the M15 family. The pH optimum functioning of both endolysins was within the range 7.0–9.0, whereas the optimal values of ionic strength were different for the two proteins (25 mM vs 100 mM for the RB43 and RB49 endolysins respectively). Both peptidases were thermally resistant, with the RB43 endolysin being more stable (it restored 81 % of enzyme activity and 96 % of secondary structure after a 10 min heating at 90 °C) than its RB49 counterpart (27 and 77% respectively). The possible origin of genes of lytic l-alanoyl-d-glutamate peptidases of myoviruses as a result of horizontal transfer in the variable parts of genomes between unrelated phages having a common host is discussed.
-
-
-
-
Rolling-circle replication initiation protein of haloarchaeal sphaerolipovirus SNJ1 is homologous to bacterial transposases of the IS91 family insertion sequences
For most archaeal viruses, the mechanisms of genome replication are poorly understood, while the nature and provenance of their replication proteins are usually unknown. Here we show that replication of the circular double-stranded DNA genome of the halophilic Natrinema virus SNJ1, a member of the family Sphaerolipoviridae, is associated with the accumulation of single-stranded replicative intermediates, which is typical of rolling-circle replication. The homologues of RepA, the only enzyme that is indispensable for SNJ1 genome replication, are widespread in archaea and are most closely related to bacterial transposases of the IS91 and ISCR family insertion sequences, as opposed to other viral rolling-circle replication initiation proteins. Our results provide insights into the replication mechanism of archaeal viruses and emphasize the evolutionary connection between viruses and other types of mobile genetic elements.
-
- TSE Agents
-
-
-
Both murine host and inoculum modulate expression of experimental variant Creutzfeldt–Jakob disease
More LessTransmissible spongiform encephalopathies (TSEs) are infections that are experimentally transmissible to laboratory animals. TSE agents (prions) can be serially passaged in the same animal species. The susceptibility of mice to infection with specific TSE agents can be unpredictable and must be established empirically. We challenged wild-type C57BL/6 and RIIIS/J mice and transgenic mice overexpressing bovine prion protein (TgBo110) with a human brain infected with variant Creutzfeldt–Jakob disease (vCJD) agent and pooled brains of macaques experimentally infected with human vCJD agent (first-passage macaque vCJD). The human vCJD brain yielded a wide range of infectivity titres in different mouse models; TgBo110 mice were the most sensitive. In contrast, infectivity titres of macaque vCJD brain were similar in all three murine models. The brains of RIIIS/J mice infected with both human and macaque vCJD had mild or no vacuolation, while infected C57BL/6 and TgBo110 mice had spongiform degeneration with vacuolation. Abnormal prion protein (PrPTSE) extracted from the brains of vCJD-infected TgBo110 mice displayed different glycosylation profiles and had greater resistance to denaturation by guanidine hydrochloride than PrPTSE from infected wild-type mice or from either inoculum. Those histopathological features of TSE and physical properties of PrPTSE in mice with experimental vCJD were intrinsic to the host, even though we also observed differences between wild-type mice infected with either agent, suggesting a modulatory effect of the inoculum. This study compared three widely used mouse models infected with two different vCJD inocula. The results show that the host plays a major role in manifestations of experimental TSEs.
-
-
- Corrigendum
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)