-
Volume 98,
Issue 12,
2017
Volume 98, Issue 12, 2017
- Insect
-
- DNA Virus
-
-
Baculoviruses require an intact ODV entry-complex to resist proteolytic degradation of per os infectivity factors by co-occluded proteases from the larval host
More LessBaculoviruses orally infect caterpillars in the form of occlusion-derived viruses (ODVs). The ODV-envelope contains a number of proteins which are essential for oral infectivity, called per os infectivity factors (PIFs). Most of these PIFs are involved in the formation of an ODV-entry complex that consists of a stable core, formed by PIF1, PIF2, PIF3 and PIF4, and the more loosely associated PIFs P74 (PIF0) and P95 (PIF8). PIF1, PIF2 and PIF3 are essential for formation of the stable core, whereas deletion of the pif4 gene results in the formation of a smaller complex. P74 is not needed for formation of the stable core. We show here in larva-derived ODVs of the Autographa californica multicapsid nucleopolyhedrovirus that PIF-proteins are degraded by host-derived proteases after deletion of a single pif-gene. Constituents of the stable core-complex appeared to be more resistant to proteases as part of the complex than as monomer, as in ODVs of a p74 deletion mutant only the stable core was found but no PIF monomers. When the stable core lacks PIF4, it lost its proteolytic resistance as the resulting smaller core complex was degraded in a pif4 deletion mutant. We also identified PIF6 as a loosely associated component of the entry complex that appeared nevertheless important for the proteolytic resistance of the stable core, which was degraded after deletion of pif6. We conclude from these results that an intact entry-complex in the ODV-envelope is prerequisite for proteolytic resistance of PIF-proteins under the alkaline conditions of the larval midgut.
-
- Plant
-
- RNA Virus
-
-
Fasting alters aphid probing behaviour but does not universally increase the transmission rate of non-circulative viruses
A fasting period prior to non-circulative virus acquisition has been shown to increase the rate of transmission by aphids. However, this effect has only been studied for a few virus–vector combinations, and there are contradictory results in the literature as to the role of fasting on virus acquisition. We analysed the influence of fasting on the transmission of three non-circulative viruses, Cucumber mosaic virus, Zucchini yellow mosaic virus and Cauliflower mosaic virus, by two aphid vector species: Myzus persicae Sulzer (Hemiptera: Aphididae) and Aphis gossypii Glover (Hemiptera: Aphididae). All variables tested, including the virus species and isolate, and the species of aphid, influenced the effect of a fasting period on virus transmission efficiency. Furthermore, when aphids were subjected to an overnight feeding period on a sucrose solution, the fasting effect disappeared and the probing behaviour of these aphids was markedly different to plant-reared aphids. The electrical penetration graph (EPG) technique revealed that fasting altered the probing behaviour of M. persicae and A. gossypii, with fasted aphids beginning to feed sooner and having a significantly longer first intracellular puncture, measured as a potential drop. Significantly longer sub-phase II-3 of the potential drop and more archlets during this sub-phase were also observed for fasted aphids of both species. However, these behavioural changes were not predictive of increasing virus transmission following a fasting period. The impacts of pre-acquisition fasting on aphid probing behaviour and on the mechanisms of non-circulative virus transmission are discussed.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
