-
Volume 98,
Issue 11,
2017
Volume 98, Issue 11, 2017
- Review
-
-
-
Future research to underpin successful peste des petits ruminants virus (PPRV) eradication
More LessPeste des petits ruminants virus (PPRV) is a significant pathogen of small ruminants and is prevalent in much of Africa, the Near and Middle East and Asia. Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has continued to spread, with its range stretching from Morocco in the west to China and Mongolia in the east. Some of the world’s poorest communities rely on small ruminant farming for subsistence and the continued endemicity of PPRV is a constant threat to their livelihoods. Moreover, PPRV’s effects on the world’s population are felt broadly across many economic, agricultural and social situations. This far-reaching impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) to develop a global strategy for the eradication of this virus and its disease. PPRV is a morbillivirus and, given the experience of these organizations in eradicating the related rinderpest virus, the eradication of PPRV should be feasible. However, there are many critical areas where basic and applied virological research concerning PPRV is lacking. The purpose of this review is to highlight areas where new research could be performed in order to guide and facilitate the eradication programme. These areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics. With the support of the international virology community, the successful eradication of PPRV can be achieved.
-
-
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV Virus Taxonomy Profile: Hepeviridae
The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals. Extrahepatic manifestations of Guillain–Barré syndrome, neuralgic amyotrophy, glomerulonephritis and pancreatitis have been described in humans. Avian hepatitis E virus causes hepatitis–splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Hepeviridae, which is available at www.ictv.global/report/hepeviridae.
-
-
- Animal
-
- Double-strand RNA Viruses
-
-
A provisional complete genome-based genotyping system for rotavirus species C from terrestrial mammals
More LessRotaviruses C (RVCs) have been detected in pigs, humans, cows, ferrets and dogs. Despite their zoonotic impact and pathogenicity, the genetic characterization of RVCs is incomplete, unlike rotaviruses A (RVAs), whose genetics are well studied. Several studies reported partial and complete genomic sequences for multiple porcine and canine RVCs. We aimed to establish a complete genome-based genotyping system for RVCs, by analysing complete genome data from 22 porcine RVCs identified in Japan from 2002 to 2010, along with those from multiple human, bovine, porcine, canine and ferret RVCs reported in several previous studies. Comparative sequence analyses among RVCs from various host species demonstrated that porcine RVCs had a high level of genetic diversity. In addition, phylogenetic analyses of all 11 RNA segments indicated that porcine RVCs could be classified into multiple genotypes. Notably, the VP4 dendrogram divided bovine RVCs into multiple genotypes. Consequently, the provisional genotype classification for RVCs from terrestrial mammals revealed the existence of genotypes 18G, 21P, 13I, 4R, 6C, 6M, 9A, 8N, 6T, 5E and 4H for the genes VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5, respectively, based on the cut-off values as defined by the Rotavirus Classification Working Group. The system established in this study deepens our understanding of RVC evolution and facilitates the discovery of genetic events (gene reassortment and interspecies transmission) among RVCs.
-
- Negative-strand RNA Viruses
-
-
The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States
Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146–147, that experienced rapid growth in Manitoba's swine herds during 2014–2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.
-
-
-
Toscana virus cap-snatching and initiation of transcription
More LessToscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5′ end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11–16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
-
-
-
Near-infrared fluorescent protein iRFP720 is optimal for in vivo fluorescence imaging of rabies virus infection
More LessIn vivo imaging is a noninvasive method that enables real-time monitoring of viral infection dynamics in a small animal, which allows a better understanding of viral pathogenesis. In vivo bioluminescence imaging of virus infection is widely used but, despite its advantage over bioluminescence that no substrate administration is required, fluorescence imaging is not used because of severe autofluorescence. Recently, several far-red and near-infrared (NIR) fluorescent proteins (FPs) have been developed and shown to be useful for whole-body fluorescence imaging. Here, we report comparative testing of far-red and NIR FPs in the imaging of rabies virus (RABV) infection. Using the highly neuroinvasive 1088 strain, we generated recombinant RABV that expressed FPs such as Katushka2S, E2-Crimson, iRFP670 or iRFP720. After intracerebral inoculation to nude mice, the 1088 strain expressing iRFP720, the most red-shifted FP, was detected the earliest with the highest signal-to-noise ratio using a filter set for >700 nm, in which the background signal level was very low. Furthermore, we could also track viral dissemination from the spinal cord to the brain in nude mice after intramuscular inoculation of iRFP720-expressing 1088 into the hind limb. Hence, we conclude that the NIR FP iRFP720 used with a filter set for >700 nm is useful for in vivo fluorescence imaging not only for RABV infection but also for other virus infections. Our findings will also be useful for developing dual-optical imaging of virus–host interaction dynamics using bioluminescence reporter mice for inflammation imaging.
-
-
-
Epidemiology and molecular characterization of influenza viruses, human parechoviruses and enteroviruses in children up to 5 years with influenza-like illness in Northern Italy during seven consecutive winter seasons (2010–2017)
Besides the influenza virus (IV), several other viruses are responsible for influenza-like illness (ILI). Although human parechoviruses (HPeVs) and enteroviruses (EVs) may impact on ILI, limited data on their epidemiological characteristics are available. During seven consecutive winter seasons (from 2010–2011 to 2016–2017), within the framework of an influenza surveillance system (InfluNet), 593 respiratory swabs were collected from children ≤5 years of age with ILIs. Molecular detection showed that 58.3 % of swabs were positive for at least one of the viruses under study: 46 % for IV, 13 % for EV and 5.4 % for HPeV. A single virus was identified in 51.3 % of samples while more than one virus was detected in 7 % of the samples. The risk of contracting IV was higher than the risk associated with EV, which in turn was higher than the risk of contracting HPeV. The risk of developing an IV infection was twofold greater in children >3 years than in those ≤3 years, who had higher risk of EV/HPeV infection. The frequency of EV/HPeV-positive swabs increased significantly during the 2016–2017 winter season compared to the previous six seasons. Sixteen EV genotypes were identified belonging to species A and B. HPeV-1 was the most frequently detected genotype, followed by -6 and -3. In this study, IV was mainly responsible for ILI, however EV and HPeV were also involved and particularly affected children ≤3 years of age. Influenza surveillance samples could provide us with valuable insight into the epidemiological features of viruses involved in ILI.
-
- Positive-strand RNA Viruses
-
-
Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate
Zika virus (ZIKV, genus Flavivirus) has emerged as a major mosquito-transmitted human pathogen, with recent outbreaks associated with an increased incidence of neurological complications, particularly microcephaly and the Guillain–Barré syndrome. Because the virus has only very recently emerged as an important pathogen, research is being hampered by a lack of reliable molecular tools. Here we report an infectious cDNA (icDNA) clone for ZIKV isolate BeH819015 from Brazil, which was selected as representative of South American ZIKV isolated at early stages of the outbreak. icDNA clones were assembled from synthetic DNA fragments corresponding to the consensus sequence of the BeH819015 isolate. Virus rescued from the icDNA clone had properties identical to a natural ZIKV isolate from South America. Variants of the clone-derived virus, expressing nanoluciferase, enhanced green fluorescent or mCherry marker proteins in both mammalian and insect cells and being genetically stable for multiple in vitro passages, were obtained. A ZIKV subgenomic replicon, lacking a prM- and E glycoprotein encoding region and expressing a Gaussia luciferase marker, was constructed and shown to replicate both in mammalian and insect cells. In the presence of the Semliki Forest virus replicon, expressing ZIKV structural proteins, the ZIKV replicon was packaged into virus-replicon particles. Efficient reverse genetic systems, genetically stable marker viruses and packaged replicons offer significant improvements for biological studies of ZIKV infection and disease, as well as for the development of antiviral approaches.
-
-
-
CD59 association with infectious bronchitis virus particles protects against antibody-dependent complement-mediated lysis
CD59 protein functions as a negative regulator of the terminal pathway of the complement system by binding to the C8/C9 factors. To date, little is known about the role of CD59 in coronavirus infectious bronchitis virus (IBV) infection. In this study, we discovered that CD59 was downregulated in IBV-infected cells and was associated with IBV virions. This association protected IBV particles from antibody-dependent complement-mediated lysis. IBV titres in the supernatant were significantly increased when CD59 proteins were overexpressed in cells followed by IBV infection, and this observation was further supported by knockdown or cleavage of CD59. Because no considerable change in IBV N protein and viral RNA levels was detected in total cell lysates prepared from the overexpression, knockdown or cleavage of CD59 groups, our data indicated that CD59 was involved in IBV particle release and that IBV had evolved a mechanism to utilize CD59 to evade complement-mediated destruction.
-
-
-
Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes
More LessZika virus (ZIKV) is a mosquito-borne flavivirus and has historically been reported to cause mild symptomatic diseases during human infections. More recently, the explosion of microcephaly among infants born to ZIKV-infected women has made ZIKV a global public health concern. While ZIKV causes acute human diseases, infections of vector mosquitoes are basically non-pathogenic, allowing persistent infections and conferring lifelong ability to transmit the virus. Recent studies have revealed that DNA forms of arboviral RNA genomes play a significant role in viral persistence in mosquitoes. We have initiated experiments to determine whether ZIKV generates viral DNA (vDNA) forms following infection in mosquitoes. Here we show that vDNAs are generated following ZIKV infection both in mosquito cell cultures and in its primary vector Aedes aegypti. vDNA formation is more extensive in RNA interference (RNAi)-deficient Aedes albopictus-derived C6/36 cells compared to RNAi-proficient mosquito cells. In addition, vDNAs are generated via multiple template-switching events.
-
-
-
Molecular characterization of Porcine sapelovirus in Hunan, China
Porcine sapeloviruses (PSVs) are widely distributed in pig populations; however, little information on their evolutionary history and the mechanisms driving their divergence is available. Therefore, in the present study, 241 fecal samples and 91 intestinal contents collected from pigs at 26 farms in Hunan, China, were tested for the presence of PSVs. The overall PSV positivity rate was 46.39 %, with a particularly high infection rate detected in nursery and fattening pigs. A total of 29 PSV strains (PSV-HuNs) were isolated, with these showing high genetic diversity based on phylogenetic and pairwise distance analyses of the capsid-protein gene sequences. Incongruence between phylognetic trees of the capsid-protein and 3CD regions indicated frequent recombination within the PSV-HuNs, and a putative recombinant hotspot near the 3′ end of the P1 region was identified. Our results suggested that recombination played an important role in driving PSV genetic diversity and evolution.
-
- Small DNA Viruses
-
-
Next-generation sequencing revealed divergence in deletions of the preS region in the HBV genome between different HBV-related liver diseases
In order to investigate if deletion patterns of the preS region can predict liver disease advancement, the preS region of the hepatitis B virus (HBV) genome in 45 chronic hepatitis B (CHB) and 94 HBV-related hepatocellular carcinoma (HCC) patients was sequenced by next-generation sequencing (NGS) and the percentages of nucleotide deletion in the preS region were analysed. Hierarchical clustering and heatmaps based on deletion percentages of preS revealed different deletion patterns between CHB and HCC patients. Intergenotype comparison also indicated divergence in preS deletions between HBV genotype B and C. No significant difference was found in preS deletion patterns between sera and matched adjacent non-tumour tissues. Based on hierarchical clustering, HCC patients were classed into two groups with different preS deletion patterns and different clinical features. Finally, the support vector machine (SVM) model was trained on preS nucleotide deletion percentages and used to predict HCC versus CHB patients. The prediction performance was assessed with fivefold cross-validation and independent cohort validation. The median area under the curve (AUC) was 0.729 after repeating SVM 500 times with fivefold cross-validations. After parameter optimization, the SVM model was used to predict an independent cohort with 51 CHB patients and 72 HCC patients and the AUC was 0.727. In conclusion, the use of the NGS method revealed a prominent divergence in preS deletion patterns between disease groups and virus genotypes, but not between different tissue types. Quantitative NGS data combined with a machine learning method could be a powerful approach for prediction of the status of different diseases.
-
-
-
Substitutions at residues 300 and 389 of the VP2 capsid protein serve as the minimal determinant of attenuation for canine parvovirus vaccine strain 9985-46
Identifying molecular determinants of virulence attenuation in live attenuated canine parvovirus (CPV) vaccines is important for assuring their safety. To this end, we identified mutations in the attenuated CPV 9985-46 vaccine strain that arose during serial passage in Crandell–Rees feline kidney cells by comparison with the wild-type counterpart, as well as minimal determinants of the loss of virulence. Four amino acid substitutions (N93K, G300V, T389N and V562L) in VP2 of strain 9985-46 significantly restricted infection in canine A72 cells. Using an infectious molecular clone system, we constructed isogenic CPVs of the parental virulent 9985 strain carrying single or double mutations. We observed that only a single amino acid substitution in VP2, G300V or T389N, attenuated the virulent parental virus. Combinations of these mutations further attenuated CPV to a level comparable to that of 9985-46. Strains with G300V/T389N substitutions did not induce clinical symptoms in experimentally infected pups, and their ability to infect canine cells was highly restricted. We found that another G300V/V562L double mutation decreased affinity of the virus for canine cells, although its pathogenicity to dogs was maintained. These results indicate that mutation of residue 300, which plays a critical role in host tropism, is not sufficient for viral attenuation in vivo, and that attenuation of 9985-46 strain is defined by at least two mutations in residues 300 and 389 of the VP2 capsid protein. This finding is relevant for quality control of the vaccine and provides insight into the rational design of second-generation live attenuated vaccine candidates.
-
-
-
Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3–2.8E5) and 9.9E6 (4E6–18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6–15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
-
-
-
Hepatitis B virus X protein suppresses all-trans retinoic acid-induced apoptosis in human hepatocytes by repressing p14 expression via DNA methylation
More LessAll-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to activate p14 expression via promoter hypermethylation to induce p53-dependent apoptosis in human hepatocytes. In this study, we found that the oncogenic hepatitis B virus (HBV) X protein (HBx) of HBV, derived from both overexpression and 1.2-mer replicon systems, suppresses ATRA-induced apoptosis in p53-positive human hepatocytes. For this effect, HBx upregulated both protein and enzyme activity levels of DNA methyltransferase 1, 3a and 3b, in the presence of ATRA and thereby inhibited p14 expression via promoter hypermethylation, resulting in inactivation of the p14-mouse double minute 2 pathway and subsequent downregulation of p53 levels. As a result, HBx was able to impair the potential of ATRA to activate apoptosis-related molecules, including Bax, p53-upregulated modulator of apoptosis, caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In conclusion, the present study provides a new oncogenic action mechanism of HBx, namely by suppressing the anticancer potential of ATRA to induce p53-dependent apoptosis in HBV-infected hepatocytes.
-
-
-
Molecular characterization, prevalence and clinical relevance of Phodopus sungorus papillomavirus type 1 (PsuPV1) naturally infecting Siberian hamsters (Phodopus sungorus)
Phodopus sungorus papillomavirus type 1 (PsuPV1), naturally infecting Siberian hamsters (Phodopus sungorus) and clustering in the genus Pipapillomavirus (Pi-PV), is only the second PV type isolated from the subfamily of hamsters. In silico analysis of three independent complete viral genomes obtained from cervical adenocarcinoma, oral squamous cell carcinoma and normal oral mucosa revealed that PsuPV1 encodes characteristic viral proteins (E1, E2, E4, E6, E7, L1 and L2) with conserved functional domains and a highly conserved non-coding region. The overall high prevalence (102/114; 89.5 %) of PsuPV1 infection in normal oral and anogenital mucosa suggests that asymptomatic infection with PsuPV1 is very frequent in healthy Siberian hamsters from an early age onward, and that the virus is often transmitted between both anatomical sites. Using type-specific real-time PCR and chromogenic in situ hybridization, the presence of PsuPV1 was additionally detected in several investigated tumours (cervical adenocarcinoma, cervical adenomyoma, vaginal carcinoma in situ, ovarian granulosa cell tumour, mammary ductal carcinoma, oral fibrosarcoma, hibernoma and squamous cell papilloma) and normal tissues of adult animals. In the tissue sample of the oral squamous cell carcinoma individual, punctuated PsuPV1-specific in situ hybridization spots were detected within the nuclei of infected animal cells, suggesting viral integration into the host genome and a potential etiological association of PsuPV1 with sporadic cases of this neoplasm.
-
-
-
Computational analysis of a species D human adenovirus provides evidence of a novel virus
More LessA human adenovirus (HAdV) species D, was isolated from a hospitalised child with severe lower respiratory infection. It was initially detected in the nasopharyngeal aspirate of the child followed by conventional PCR amplification of the hexon, penton base, and fibre genes. Sanger DNA sequencing and phylogenetic analyses showed characteristics of a recombinant genome not described before. Next Generation Sequencing analysis was performed to reconstruct its complete DNA genome after viral isolation in adenocarcinoma human cell line (A549). A complete genomic sequence of 35.2 kb in length, with a G+C content of 57 % was obtained, related to HAdV-D29 (96 % identity). Imputed serology analysis demonstrated its novel type with a nucleotide sequence identity of 95.3 % (hexon loop 1) and 96 % (hexon loop 2) to HAdV-D9. The penton base gene showed a novel sequence, distantly related to HAdV-D44. The E3 and E4 regions evolved significantly from their ancestors. The fibre gene was almost identical to the knob region of HAdV-D15 but showed an unrelated shaft sequence. In conclusion the genomics of this novel HAdV, designated the HAdV-D83 [P83H9F15] prototype and bearing a new penton base gene, supports the importance of viral evolution to understand modified tissue tropism, enhanced transmission, or altered virulence.
-
-
-
The cellular endosomal protein stannin inhibits intracellular trafficking of human papillomavirus during virus entry
Human papillomaviruses (HPVs) are the most common sexually transmitted viruses and one of the most important infectious causes of cancers worldwide. While prophylactic vaccines are effective against certain strains of HPV, established infections still cause deadly cancers in both men and women. HPV traffics to the nucleus via the retrograde transport pathway, but the mechanism of intracellular transport of non-enveloped viruses such as HPV is incompletely understood. Using an overexpression screen, we identify several genes that control HPV16 entry. We focused on the mechanism by which one of the screen hits, stannin, blocks HPV16 infection. Stannin has not been previously implicated in virus entry. Overexpression of stannin specifically inhibits infection by several HPV types, but not other viruses tested. Stannin is constitutively expressed in human keratinocytes, and its basal levels limit entry by HPV16. Stannin is localized to the endolysosomal compartment and does not affect HPV16 binding to cells, virus uptake, or virus uncoating, but inhibits the entry of HPV into the trans-Golgi network (TGN) and stimulates HPV degradation. We further show that stannin interacts with L1 major capsid protein and impairs the interaction of the L2 minor capsid protein with retromer, which is required for virus trafficking to the TGN. Our findings shed light on a novel cellular protein that interferes with HPV entry and highlight the role of retrograde transport in HPV entry.
-
- Large DNA Viruses
-
-
A pUL25 dimer interfaces the pseudorabies virus capsid and tegument
Inside the virions of α-herpesviruses, tegument protein pUL25 anchors the tegument to capsid vertices through direct interactions with tegument proteins pUL17 and pUL36. In addition to promoting virion assembly, both pUL25 and pUL36 are critical for intracellular microtubule-dependent capsid transport. Despite these essential roles during infection, the stoichiometry and precise organization of pUL25 and pUL36 on the capsid surface remain controversial due to the insufficient resolution of existing reconstructions from cryo-electron microscopy (cryoEM). Here, we report a three-dimensional (3D) icosahedral reconstruction of pseudorabies virus (PRV), a varicellovirus of the α-herpesvirinae subfamily, obtained by electron-counting cryoEM at 4.9 Å resolution. Our reconstruction resolves a dimer of pUL25 forming a capsid-associated tegument complex with pUL36 and pUL17 through a coiled coil helix bundle, thus correcting previous misinterpretations. A comparison between reconstructions of PRV and the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) reinforces their similar architectures and establishes important subfamily differences in the capsid–tegument interface.
-
-
-
Dynamic regulatory interaction between cytomegalovirus major tegument protein pp65 and protein kinase pUL97 in intracellular compartments, dense bodies and virions
Human cytomegalovirus (HCMV) is a ubiquitous pathogen of considerable clinical importance. Understanding the processes that are important for viral replication is essential for the development of therapeutic strategies against HCMV infection. The HCMV-encoded protein kinase pUL97 is an important multifunctional regulator of viral replication. Several viral and cellular proteins are phosphorylated by pUL97. The phosphoprotein pp65 is one important substrate of pUL97. It is the most abundant tegument protein of HCMV virions, mediating the upload of other virion constituents and contributing to particle integrity. Further to that, it interferes with host innate immune defences, thereby enabling efficient viral replication. By applying different approaches, we characterized the pp65–pUL97 interaction in various compartments. Specifically, the pUL97 interaction domain of pp65 was defined (282–415). A putative cyclin bridge that enhances pUL97–pp65 interaction was identified. The impact of pUL97 mutation on virion and dense body morphogenesis was addressed using pUL97 mutant viruses. Alterations in the proteome of viral particles were seen, especially with mutant viruses expressing cytoplasmic variants of pUL97. On the basis of these data we postulate a so far poorly recognized functional relationship between pp65 and pUL97, and present a refined model of pp65–pUL97 interaction.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less