- Volume 96, Issue 6, 2015
Volume 96, Issue 6, 2015
- Animal
-
- Positive-strand RNA Viruses
-
-
Two conserved histidines (His490 and His621) on the E2 glycoprotein of hepatitis C virus are critical for CD81-mediated cell entry
More LessHepatitis C virus (HCV) entry is a sequential and multi-step process that includes receptor interactions followed by pH-dependent membrane fusion. Specific and conserved histidine residues on the viral envelope proteins are involved in most pH-induced virus entries. In the case of HCV, some conserved histidines on the E1 and E2 proteins have been investigated in HCV pseudotype particle (HCVpp) systems. However, the roles of these histidines in cell-culture-derived HCV particle (HCVcc) systems remain unclear due to the different aspects of the viral life cycle emphasized by the two systems. In this study, the role of two conserved histidines (His490 and His621, located in domains II and III of E2, respectively) in HCV infection was evaluated in the context of JFH-1-based HCVcc using alanine substitutions. The infectivity of the H490A mutant decreased in spite of comparable initial RNA replication, protein expression and assembly efficiency as WT virus. The H621A mutant did not affect viral protein expression, but exhibited no obvious infectivity; there were fewer core proteins in the culture supernatant compared with WT virus, indicating the partially deficient virus assembly. The HCV receptor CD81-binding ability of the two mutant E2s was assessed further using enzyme immunoassays. The CD81-binding activity of H490A-E2 was reduced, and H621A-E2 was unable to bind to CD81. These data revealed the crucial role played by His490 and His621 in HCV infection, particularly during CD81 binding in cell entry. These results also contributed to the mechanical identification of the histidines involved in pH-dependent HCV entry.
-
- Double-strand RNA Viruses
-
-
Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel
Epizootic hemorrhagic disease virus (EHDV), a member of the genus Orbivirus not reported previously in Israel, was isolated from Israeli cattle during a ‘bluetongue-like’ disease outbreak in 2006. To ascertain the origin of this new virus, three isolates from the outbreak were fully sequenced and compared with available sequences. Whilst the L2 gene segment clustered with the Australian EHDV serotype 7 (EHDV-7) reference strain, most of the other segments were clustered with EHDV isolates of African/Middle East origin, specifically Bahrain, Nigeria and South Africa. The M6 gene had genetic relatedness to the Australian/Asian strains, but with the limited data available the significance of this relationship is unclear. Only one EHDV-7 L2 sequence was available, and as this gene encodes the serotype-specific epitope, the relationship of these EHDV-7 L2 genes to an Australian EHDV-7 reflects the serotype association, not necessarily the origin. The genetic data indicated that the strains affecting Israel in 2006 may have been related to similar outbreaks that occurred in North Africa in the same year. This finding also supports the hypothesis that EHDV entered Israel during 2006 and was not present there before this outbreak.
-
- Small DNA Viruses
-
-
Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae
Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups.
-
-
-
Aleutian mink disease virus in free-ranging mustelids in Finland – a cross-sectional epidemiological and phylogenetic study
Aleutian mink disease virus (AMDV) can cause severe immune-complex-mediated disease in American mink. AMDV has also been detected in several other mustelid species with potential negative impact on their health and population. A molecular and cross-sectional epidemiological study was conducted to obtain data on the prevalence, distribution, transmission and diversity of AMDV strains in Finnish free-ranging mustelids and risk factors associated with infection. The presence of anti-AMDV antibodies and/or AMDV DNA was tested from 308 samples representing eight mustelid species and 17 administrative regions. Positive samples were detected across Finland, and in 54 % (31/57) of feral American mink, 27 % (7/26) of European badgers and 7 % (1/14) of European polecats. Samples from Eurasian otters, European pine martens, least weasels, stoat and wolverine were negative. Major risk factors for infection were the species American mink with 335 and badger with 74 times higher odds than other species, and the years 2006–2009 with five times higher odds than the years 2010–2014. No clustering according to species, geographical origin or year was evident in phylogeny, except for four divergent sequences from Estonian badgers that formed a separate phylogroup distinct from other AMDV strains. This study showed that AMDV was prevalent in certain species of Finnish free-ranging mustelids and widely distributed across Finland. Furthermore, the free-ranging mustelids carried both strains similar to those found in farmed mink, but also distinct strains that may represent novel amdoparvoviruses.
-
- Large DNA Viruses
-
-
VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha- and Gammaherpesvirinae subfamilies
More LessThe viral tegument is a layer of proteins between the herpesvirus capsid and its outer envelope. According to phylogenetic studies, only a third of these proteins are conserved amongst the three subfamilies (Alpha-, Beta- and Gammaherpesvirinae) of the family Herpesviridae. Although some of these tegument proteins have been studied in more detail, the structure and function of the majority of them are still poorly characterized. VP22 from Herpes simplex virus 1 (subfamily Alphaherpesvirinae) is a highly interacting tegument protein that has been associated with tegument assembly. We have determined the crystal structure of the conserved core domain of VP22, which reveals an elongated dimer with several potential protein–protein interaction regions and a peptide-binding site. The structure provides us with the structural basics to understand the numerous functional mutagenesis studies of VP22 found in the literature. It also establishes an unexpected structural homology to the tegument protein ORF52 from Murid herpesvirus 68 (subfamily Gammaherpesvirinae). Homologues for both VP22 and ORF52 have been identified in their respective subfamilies. Although there is no obvious sequence overlap in the two subfamilies, this structural conservation provides compelling structural evidence for shared ancestry and functional conservation.
-
-
-
Parapoxvirus (PPV) of red deer reveals subclinical infection and confirms a unique species
More LessParapoxvirus (PPV) infections are of worldwide importance, particularly in sheep and goat herds. Owing to the zoonotic potential of all PPV species, they are a permanent threat to human health as well. The virus is also known to affect wildlife, as reported for pinnipeds, red deer and several other wild ruminants. PPVs found in red deer have been claimed as a unique species according to certain genomic features. So far infection of wildlife has been recognized because of clinical manifestation such as inflammation, stomatitis or typical pox-like lesions in the skin or mucous membranes. Here we report the use of targeted molecular diagnostics for the presence of PPV genomes in tonsil swabs of apparently healthy red deer in the Bavarian Alps. Out of 1764 swabs, 0.79 % tested positive for PPV genome presence. From one sample, PPV was successfully isolated in cell culture. This virus became the subject of complete genome characterization using next generation sequencing and various subsidiary PCR protocols. Strikingly, about a quarter of all ORFs were found to be larger than the corresponding ORFs in the reference PPV genome sequences used for comparison. To our knowledge this is the first genome-wide analysis that confirms red deer PPV as a unique species within the genus Parapoxvirus in Europe. Persistence of PPV in Alpine red deer indicates a source for virus transmission to susceptible livestock and hunters. The findings provide a further example of wildlife animals playing an important role as an inconspicuous reservoir of zoonotic diseases.
-
- Retroviruses
-
-
Nef promotes evasion of human immunodeficiency virus type 1-infected cells from the CTLA-4-mediated inhibition of T-cell activation
CTLA-4 is a negative regulator of T-cell receptor-mediated CD4+ T-cell activation and function. Upregulation of CTLA-4 during human immunodeficiency virus type 1 (HIV-1) infection on activated T cells, particularly on HIV-specific CD4+ T cells, correlates with immune dysfunction and disease progression. As HIV-1 infects and replicates in activated CD4+ T cells, we investigated mechanisms by which HIV-1 modulates CTLA-4 expression to establish productive viral infection in these cells. Here, we demonstrate that HIV-1 infection in activated CD4+ T cells was followed by Nef-mediated downregulation of CTLA-4. This was associated with a decreased T-cell activation threshold and significant resistance to CTLA-4 triggering. In line with these in vitro results, quantification of pro-viral HIV DNA from treatment-naive HIV-infected subjects demonstrated a preferential infection of memory CD4+CTLA-4+ T cells, thus identifying CTLA-4 as a biomarker for HIV-infected cells in vivo. As transcriptionally active HIV-1 and Nef expression in vivo were previously shown to take place mainly in the CD3+CD4–CD8– [double-negative (DN)] cells, we further quantified HIV DNA in the CTLA-4+ and CTLA-4– subpopulations of these cells. Our results showed that DN T cells lacking CTLA-4 expression were enriched in HIV DNA compared with DN CTLA-4+ cells. Together, these results suggested that HIV-1 preferential infection of CD4+CTLA-4+ T cells in vivo was followed by Nef-mediated concomitant downregulation of both CD4 and CTLA-4 upon transition to productive infection. This also highlights the propensity of HIV-1 to evade restriction of the key negative immune regulator CTLA-4 on cell activation and viral replication, and therefore contributes to the overall HIV-1 pathogenesis.
-
-
-
Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1
The Thai trial (RV144) indicates that a prime–boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.
-
-
-
Identification of RNA helicases in human immunodeficiency virus 1 (HIV-1) replication – a targeted small interfering RNA library screen using pseudotyped and WT HIV-1
More LessCentral to the development of new treatments for human immunodeficiency virus 1 (HIV-1) is a more thorough understanding of the viral life cycle and the cellular cofactors upon which this depends. Targeting cellular proteins and their interaction with HIV-1 has the potential to reduce the problem of emerging viral resistance to drugs as mutational escape is more difficult. We performed a short interfering RNA (siRNA) library screen targeting 59 cellular RNA helicases, assessing the effect on both viral capsid protein production and infectious virion formation. Five RNA helicases were identified which, when knocked down, reproducibly decreased infectious particle production: DDX5, DDX10, DDX17, DDX28 and DDX52. Two of these proteins (DDX5 and DDX17) have known roles in HIV-1 replication. A further helicase (DDX10) was a positive hit from a previous genome-wide siRNA screen; however, DDX28 and DDX52 have not previously been implicated as essential cofactors for HIV-1.
-
- Insect Viruses
-
- RNA
-
-
Infectivity of Drosophila C virus following oral delivery in Drosophila larvae
More LessThe route of pathogen entry can have a major effect on the ability of a virus to induce a prolific infection, but it can also affect the ability of the host organism to induce an immune response to fight the infection. Transmission of arboviruses that cause serious diseases in humans often begin by an insect ingesting a virus, which then disseminates through the internal organs and tissues and ultimately culminates in virus transmission to a human host. Understanding the effect of a natural route of infection on the host–pathogen interaction may facilitate development of approaches to prevent viral dissemination. Drosophila has been a useful model organism for understanding host–virus interactions; however, most studies have achieved infection by artificially injecting the virus into the host. Here, we developed a single-stranded quantitative PCR able to detect only actively replicating Drosophila C virus (DCV) to study the effect of viral feeding at the early stages of larval development. Exposure of newly hatched larvae to DCV led to 20 % of larvae becoming infected within 12 h post-contamination, and caused a 14 % egg-to-adult mortality. This is the first time, to the best of our knowledge, that it has been shown experimentally that DCV is able to establish a prolific infection following larval feeding. Using these newly developed tools, the results suggest that larvae that become infected die before adult eclosion.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)