- Volume 96, Issue 1, 2015
Volume 96, Issue 1, 2015
- Insight Review
-
-
-
Risks to the Americas associated with the continued expansion of chikungunya virus
More LessChikungunya virus is a mosquito-borne virus that has been responsible for over 2 million human infections during the past decade. This virus, which previously had a geographical range primarily restricted to sub-Saharan Africa, the Indian subcontinent and South East Asia, has recently moved to subtropical latitudes as well as the western hemisphere. This expansion into novel habitats brings unique risks associated with further spread of the virus and the disease it causes.
-
-
- Review
-
-
-
Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology
More LessIn December 1983, a seminal paper appeared on the overexpression of human IFN-β in insect cells with a genetically engineered baculovirus. The finding that baculoviruses produced massive amounts of two proteins (polyhedrin and p10) by means of two very strong promoters and that the corresponding genes were dispensable for virus propagation in insect cells was crucial in the development of this expression system. During the next 30 years, major improvements were achieved over the original baculovirus expression vector (BEV) system, facilitating the engineering of the baculovirus vectors, the modification of the sugar moieties of glycoproteins expressed in insect cells and the scale-up of the cell culture process. To date, thousands of recombinant proteins have been produced in this successful expression system, including several protein-based human and veterinary vaccines that are currently on the market. Viral vectors based on adeno-associated virus are being produced using recombinant baculovirus technology and the first gene therapy treatment based on this method has been registered. Specially adapted BEVs are used to deliver and express heterologous genes in mammalian cells, and they may be used for gene therapy and cancer treatment in the future. The purpose of this review is to highlight the thirtieth ‘anniversary’ of this expression system by summarizing the fundamental research and major technological advances that allowed its development, whilst noting challenges for further improvements.
-
-
- Animal
-
- RNA viruses
-
-
Isolation of multiple novel paramyxoviruses from pteropid bat urine
Bats have been found to harbour a number of new emerging viruses with zoonotic potential, and there has been a great deal of interest in identifying novel bat pathogens to determine the risk to human and animal health. Many groups have identified novel viruses in bats by detection of viral nucleic acid; however, virus isolation is still a challenge, and there are few reports of viral isolates from bats. In recent years, our group has developed optimized procedures for virus isolation from bat urine, including the use of primary bat cells. In previous reports, we have described the isolation of Hendra virus, Menangle virus and Cedar virus in Queensland, Australia. Here, we report the isolation of four additional novel bat paramyxoviruses from urine collected from beneath pteropid bat (flying fox) colonies in Queensland and New South Wales during 2009–2011.
-
-
-
Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin
More LessA common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.
-
-
-
P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression
More LessNewcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic regions of the enterotropic NDV VG/GA vaccine strain using reverse genetics technology. The rescued recombinant viruses retained lentogenic pathotype and displayed delayed growth dynamics, particularly when the GFP gene was inserted between the NP and P genes of the virus. The GFP mRNA level was most abundant when the gene was inserted closer to the 3′ end and gradually decreased as the gene was inserted closer to the 5′ end. Measurement of the GFP fluorescence intensity in recombinant virus-infected cells demonstrated that the non-coding region between the P and M genes is the optimal insertion site for foreign gene expression in the VG/GA vaccine vector.
-
-
-
Combinations of oseltamivir and fibrates prolong the mean survival time of mice infected with the lethal H7N9 influenza virus
The outbreak of human infections caused by the novel avian-origin H7N9 influenza viruses in China since March 2013 underscores the urgent need to find an effective treatment strategy against H7N9 infection in humans. In this study, we assessed the effectiveness of combinations of oseltamivir and two immunomodulators (simvastatin and fenofibrate) against H7N9 infection in a mouse model. Mice treated with oseltamivir plus fenofibrate exhibited the longest mean survival time, the largest reduction of viral titre in lung tissue, the highest levels of CD4+ and CD8+ T-lymphocytes, and the greatest decrease in pulmonary inflammation. Thus, the combination of oseltamivir plus fenofibrate improved the outcomes of mice infected with H7N9 virus by simultaneously reducing viral replication and normalizing the aberrant immune response. This drug combination should be considered in randomized controlled trials of treatments for H7N9 patients.
-
-
-
Combinatorial library-based profiling of the antibody response against hepatitis C virus in humans
The antibody response plays a crucial role against hepatitis C virus (HCV) infection, and our understanding of this intricate progress in vivo is far from complete. We previously reported a novel and robust technique based on a large combinatorial viral antigen library displayed on the surface of the yeast Saccharomyces cerevisiae, allowing comprehensive profiling of polyclonal antibody responses in vivo in both qualitative and quantitative terms. Here, we report the generation and application of a combinatorial library of HCV strain JFH1 envelope glycoprotein to profile the antibody response in four HCV chronically infected individuals. By systematic analysis of the location and frequency of antigenic fragments along the JFH1 envelope glycoprotein, we showed that the major binding antibody response was targeted to E2 (80.9–99.8 %), whilst that against E1 was relatively small (0.3–19.0 %). A total of five major antigenic domains (D1–D5) were identified: one was within E1 and an additional four within E2, despite substantial variability among the different individuals. However, serum absorption with the yeast clones containing the antigenic domain D1 resulted in more reduction in neutralizing antibody activity against pseudotyped HCV than those in E2, suggesting that E1 contains additional neutralizing epitopes. Our results have provided additional insights into the HCV-specific antibody response in humans and should assist in a better understanding of protective antibody immunity and in guiding the development of effective vaccines and therapeutics against HCV infection.
-
-
-
Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles
In contrast to the current wealth of structural information concerning dicistrovirus particle structure, very little is known about their morphogenetic pathways. Here, we describe the expression of the two ORFs encoded by the Triatoma virus (TrV) genome. TrV, a member of the Cripavirus genus of the Dicistroviridae family, infects blood-sucking insects belonging to the Triatominae subfamily that act as vectors for the transmission of Trypanosoma cruzi, the aetiological agent of the Chagas disease. We have established a baculovirus-based model for the expression of the NS (non-structural) and P1 (structural) polyproteins. A preliminary characterization of the proteolytic processing of both polyprotein precursors has been performed using this system. We show that the proteolytic processing of the P1 polyprotein is strictly dependent upon the coexpression of the NS polyprotein, and that NS/P1 coexpression leads to the assembly of virus-like particles (VLPs) exhibiting a morphology and a protein composition akin to natural TrV empty capsids. Remarkably, the unprocessed P1 polypeptide assembles into quasi-spherical structures conspicuously larger than VLPs produced in NS/P1-coexpressing cells, likely representing a previously undescribed morphogenetic intermediate. This intermediate has not been found in members of the related Picornaviridae family currently used as a model for dicistrovirus studies, thus suggesting the existence of major differences in the assembly pathways of these two virus groups.
-
-
-
Porcine sapovirus replication is restricted by the type I interferon response in cell culture
More LessPorcine sapovirus (PSaV) of the family Caliciviridae, is the only member of the genus Sapovirus with cell culture and reverse genetics systems. When combined with the piglet model, these approaches provide a system to understand the molecular basis of sapovirus pathogenesis. The replication of PSaV in cell culture is, however, restricted, displaying an absolute requirement for bile acids and producing lower levels of infectious virus than other caliciviruses. The effect of bile acids has previously been linked to a reduction in the signal transducer and activator of transcription (STAT1)-mediated signalling pathway. In the current study, we observed that even in the presence of bile acids, PSaV replication in cell culture was restricted by soluble factors produced from infected cells. This effect was at least partially due to secreted IFN because treatment of cells with recombinant porcine IFN-β resulted in significantly reduced viral replication. Moreover, IFN-mediated signalling pathways (IFN, STAT1 and the 2′,5′-oligoadenylate synthetase) were activated during PSaV infection. Characterization of PSaV growth in cell lines deficient in their ability to induce or respond to IFN showed a 100–150-fold increase in infectious virus production, indicating that the primary role of bile acids was not the inactivation of the innate immune response. Furthermore, the use of IFN-deficient cell lines enabled more efficient recovery of PSaV from cDNA constructs. Overall, the highly efficient cell culture and reverse genetics system established here for PSaV highlighted the key role of the innate immune response in the restriction of PSaV infection and should greatly facilitate further molecular studies on sapovirus host–cell interactions.
-
-
-
Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin–Darby bovine kidney cells
MicroRNAs (miRNAs) are a class of short endogenous RNA molecules with the ability to control development, autophagy, apoptosis and the stress response in eukaryotes by pairing with partially complementary sites in the 3′ UTRs of targeted genes. Recent studies have demonstrated that miRNAs serve as critical effectors in intricate networks of host–pathogen interactions. Notably, we found that Bos taurus bta-miR-29b (referred to as miR-29b herein) was significantly upregulated >2.3-fold in bovine viral diarrhoea virus (BVDV) strain NADL-infected Madin–Darby bovine kidney (MDBK) cells 6 h post-infection compared with normal MDBK cells. However, the roles of miR-29b in BVDV infection and pathogenesis remain unclear. Here, we report the inhibitory effects of miR-29b on BVDV NADL replication and viral infection-related autophagy. miR-29b overexpression mediated by miRNA precursor-expressing lentivirus resulted in the attenuation of BVDV NADL infection-related autophagy by directly downregulating the intracellular expression levels of two key autophagy-associated proteins, ATG14 and ATG9A. Moreover, ATG14 and ATG9A overexpression rescue not only reversed miR-29b-inhibited autophagy, but also increased BVDV NADL replication. In previous studies, we found that the early stages of autophagy contributed to BVDV NADL replication in MDBK cells and that the inhibition of autophagy repressed BVDV NADL replication, which was also proved in the present study. Collectively, our results establish a novel link between miR-29b and viral replication, and also provide a new pathway for the intimate interaction between host cells and pathogens.
-
-
-
Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases
More LessCloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5′ RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2′-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N 7-and ribose 2′-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5′ G*pppG end showed that guanine N 7 methylation occurred prior to the ribose 2′-O methylation to yield a m7GpppG/m7GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N 7- and 2′-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the K m values of N 7-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5′ end of viral RNA.
-
-
-
A bovine G8P[1] group A rotavirus isolated from an asymptomatically infected dog
More LessGroup A rotaviruses (RVAs) are enteric pathogens with well-documented zoonotic transmissions to humans. The segmented genome of the virus enables reassortment events which might alter host susceptibility and/or disease course. Genetic analysis of rotavirus in dogs has so far only revealed RVAs with the VP7 and VP4 genome constellation G3P[3]. RVA G3P[3] have also been found in cats, humans, monkeys and bats. In the present study, we described an unusual RVA of genotype G8P[1] which was isolated from an asymptomatically infected young dog. The dog did not show signs of diarrhoea. Analysis of full-length segments of VP2, VP6 and VP7 as well as NSP1–NSP5 revealed a typical bovine-like genotype constellation G8–P[1]–I2–Rx–C2–Mx–A3–N2–T6–E2–H3. Phylogenetic analysis supported the hypothesis of an interspecies transmission from a bovine/artiodactyl species or from humans to the young dog. The isolate was likely to represent a multiple reassortant virus.
-
- DNA viruses
-
-
Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells
More LessTorque teno virus (TTV) is increasingly considered a universal marker of global immune function. The virus is supposed to replicate in lymphocytes, but poor information is available about fluctuations of viraemia after administration of anti-lymphocyte agents. We studied TTV kinetics in a cohort of 70 kidney±pancreas recipients receiving one of two different anti-T-cell induction immunosuppressants. During the first 30 days after anti-T-cell antibody administration, we report kinetics of TTV viraemia compatible with replication in T lymphocytes, and highly dependent on the potency of the anti-T-cell drug administered.
-
-
-
Equine herpesvirus type 1 replication is delayed in CD172a+ monocytic cells and controlled by histone deacetylases
More LessEquine herpesvirus type 1 (EHV-1) replicates in the epithelial cells of the upper respiratory tract and disseminates through the body via a cell-associated viraemia in monocytic cells, despite the presence of neutralizing antibodies. However, the mechanism by which EHV-1 hijacks immune cells and uses them as ‘Trojan horses’ in order to disseminate inside its host is still unclear. Here, we hypothesize that EHV-1 delays its replication in monocytic cells in order to avoid recognition by the immune system. We compared replication kinetics in vitro of EHV-1 in RK-13, a cell line fully susceptible to EHV-1 infection, and primary horse cells from the myeloid lineage (CD172a+). We found that EHV-1 replication was restricted to 4 % of CD172a+ cells compared with 100 % in RK-13 cells. In susceptible CD172a+ cells, the expression of immediate-early (IEP) and early (EICP22) proteins was delayed in the cell nuclei by 2–3 h post-infection (p.i.) compared with RK-13, and the formation of replicative compartments by 15 h p.i. Virus production in CD172a+ cells was significantly lower (from 101.7 to 103.1 TCID50 per 105 inoculated cells) than in RK-13 (from 105 to 105.7 TCID50 per 105 inoculated cells). Less than 0.02 % of inoculated CD172a+ cells produced and transmitted infectious virus to neighbouring cells. Pre-treatment of CD172a+ cells with inhibitors of histone deacetylase activity increased and accelerated viral protein expression at very early times of infection and induced productive infection in CD172a+ cells. Our results demonstrated that the restriction and delay of EHV-1 replication in CD172a+ cells are part of an immune evasive strategy and involve silencing of EHV-1 gene expression associated with histone deacetylases.
-
-
-
Glucocorticosteroids trigger reactivation of human cytomegalovirus from latently infected myeloid cells and increase the risk for HCMV infection in D+R+ liver transplant patients
Graft rejection in transplant patients is managed clinically by suppressing T-cell function with immunosuppressive drugs such as prednisolone and methylprednisolone. In such immunocompromised hosts, human cytomegalovirus (HCMV) is an important opportunistic pathogen and can cause severe morbidity and mortality. Currently, the effect of glucocorticosteroids (GCSs) on the HCMV life cycle remains unclear. Previous reports showed enhanced lytic replication of HCMV in vitro in the presence of GCSs. In the present study, we explored the implications of steroid exposure on latency and reactivation. We observed a direct effect of several GCSs used in the clinic on the activation of a quiescent viral major immediate-early promoter in stably transfected THP-1 monocytic cells. This activation was prevented by the glucocorticoid receptor (GR) antagonist Ru486 and by shRNA-mediated knockdown of the GR. Consistent with this observation, prednisolone treatment of latently infected primary monocytes resulted in HCMV reactivation. Analysis of the phenotype of these cells showed that treatment with GCSs was correlated with differentiation to an anti-inflammatory macrophage-like cell type. On the basis that these observations may be pertinent to HCMV reactivation in post-transplant settings, we retrospectively evaluated the incidence, viral kinetics and viral load of HCMV in liver transplant patients in the presence or absence of GCS treatment. We observed that combination therapy of baseline prednisolone and augmented methylprednisolone, upon organ rejection, significantly increased the incidence of HCMV infection in the intermediate risk group where donor and recipient are both HCMV seropositive (D+R+) to levels comparable with the high risk D+R− group.
-
- Retroviruses
-
-
p53 as a retrovirus-induced oxidative stress modulator
More LessInfection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator.
-
-
-
An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5′-LTR shows enhanced replication capability
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5′-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5′-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5′-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5′-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.
-
-
-
HTLV-1 bZIP factor suppresses the centromere protein B (CENP-B)-mediated trimethylation of histone H3K9 through the abrogation of DNA-binding ability of CENP-B
More LessHuman T-cell leukaemia virus type-1 (HTLV-1) infection causes adult T-cell leukaemia (ATL). The viral protein HTLV-1 bZIP factor (HBZ) is constitutively expressed in ATL cells, suggesting that HBZ plays a major role in the pathogenesis of HTLV-1-associated disease. Here, we identified centromere protein B (CENP-B) as a novel interacting partner of HBZ. HBZ and CENP-B associate with their central regions in cells. Furthermore, overexpression of HBZ abrogated the DNA-binding activity of CENP-B to the α-satellite DNA region containing the CENP-B box motif, which in turn inhibited the CENP-B-mediated trimethylation of histone H3K9 in T-cells.
-
- Plant
-
- DNA viruses
-
-
Characterization of the promoter of Grapevine vein clearing virus
More LessGrapevine vein clearing virus (GVCV) is a recently discovered DNA virus in grapevine that is closely associated with the grapevine vein clearing syndrome observed in vineyards in Missouri and surrounding states. The genome sequence of GVCV indicates that it belongs to the genus Badnavirus in the family Caulimoviridae. To identify the GVCV promoter, we cloned portions of the GVCV large intergenic region in front of a GFP gene present in an Agrobacterium tumefaciens binary vector. GFP expression was assessed by ELISA 3 days after agroinfiltration of Nicotiana benthamiana leaves. We found that the GVCV DNA segment between nts 7332 and 7672 directed expression of GFP and this expression was stronger than expression using the Cauliflower mosaic virus 35S promoter. It was revealed by 5′ and 3′ RACE that transcription was initiated predominantly at nt 7571 and terminated at nt 7676.
-
- Other viruses
-
-
-
Human respiratory syncytial virus infection is inhibited by IFN-induced transmembrane proteins
More LessThe IFN immune system plays an essential role in protecting the host against most viral infections. In order to explore the interactions between the IFN pathway and human respiratory syncytial virus (RSV) infection, and to identify potential IFN-stimulated genes (ISGs) that may be involved in suppressing the replication of RSV, we utilized an IFN pathway-specific microarray to study the effects of RSV infection on the IFN pathway in HeLa cells. We showed that RSV infection enhanced the expression of a series of ISGs, including oligoadenylate synthetase 2, IFITM1 (IFN-induced transmembrane protein 1) and myxovirus resistance 2. Our results also showed that the IFITM proteins potently inhibited RSV infection mainly by interfering with both virus entry and the subsequent replication steps, but not the attachment process. The antiviral effect of IFITM3 was not affected by ubiquitination modification. Furthermore, knocking down the endogenous and IFN-induced expression of IFITM1 and 3 facilitated RSV infection. Expression of the IFITM proteins was found to delay the phosphorylation of IFN regulatory factor 3 through interfering with the detection of viral RNA by MDA5 (melanoma differentiation-associated gene 5) and RIG-I (retinoic acid-inducible gene I). These results demonstrated that the restriction of RSV infection by the IFITM proteins was achieved through the inhibition of virus entry and replication, and they provided further insight for exploring the mechanism of IFITM-protein-mediated virus restriction.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)