-
Volume 95,
Issue 8,
2014
Volume 95, Issue 8, 2014
- Animal
-
- Retroviruses
-
-
Impact of maraviroc-resistant and low-CCR5-adapted mutations induced by in vitro passage on sensitivity to anti-envelope neutralizing antibodies
More LessThe aim of this study was to generate maraviroc (MVC)-resistant viruses in vitro using a human immunodeficiency virus type 1 subtype B clinical isolate (HIV-1KP-5) to understand the mechanism(s) of resistance to MVC. To select HIV-1 variants resistant to MVC in vitro, we exposed high-chemokine (C-C motif) receptor 5 (CCR5)-expressing PM1/CCR5 cells to HIV-1KP-5 followed by serial passage in the presence of MVC. We also passaged HIV-1KP-5 in PM1 cells, which were low CCR5 expressing to determine low-CCR5-adapted substitutions and compared the Env sequences of the MVC-selected variants. Following 48 passages with MVC (10 µM), HIV-1KP-5 acquired a resistant phenotype [maximal per cent inhibition (MPI) 24 %], whilst the low-CCR5-adapted variant had low sensitivity to MVC (IC50 ~200 nM), but not reduction of the MPI. The common substitutions observed in both the MVC-selected and low-CCR5-adapted variants were selected from the quasi-species, in V1, V3 and V5. After 14 passages, the MVC-selected variants harboured substitutions around the CCR5 N-terminal-binding site and V3 (V200I, T297I, K305R and M434I). The low-CCR5-adapted infectious clone became sensitive to anti-CD4bs and CD4i mAbs, but not to anti-V3 mAb and autologous plasma IgGs. Conversely, the MVC-selected clone became highly sensitive to the anti-envelope (Env) mAbs tested and the autologous plasma IgGs. These findings suggest that the four MVC-resistant mutations required for entry using MVC-bound CCR5 result in a conformational change of Env that is associated with a phenotype sensitive to anti-Env neutralizing antibodies.
-
-
-
Lack of antibody response in pigs immunized with the transmembrane envelope protein of porcine endogenous retroviruses
More LessRecently, we immunized different mammalian species (goats, mice, rats, rabbits, guinea pigs and hamsters) with the recombinant ectodomain of the transmembrane envelope (TM) protein p15E of porcine endogenous retrovirus (PERV). In all cases, neutralizing immune sera were induced, which recognized epitopes in the fusion peptide proximal region and the membrane proximal external region of p15E. In order to analyse whether pigs are also able to produce such antibodies, and whether such antibodies can be used to study the involvement of the TM protein in placental development (as was shown for endogenous retroviruses of other species), German landrace pigs were immunized with PERV p15E. No binding and neutralizing antibodies were produced as shown in three Western blot analyses and in a neutralization assay, indicating that pigs are tolerant to their endogenous retroviruses, at least for the ectodomain of the TM protein.
-
-
-
Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle
Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgMhigh B-cells were increased in blood lymphocytes from BLV-infected cattle. IgMhigh B-cells mainly expressed BLV antigens, whereas IgMlow B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgMlow B-cells than those in IgMhigh B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgMlow or IgM− B-cells but no IgMhigh B-cells. To our knowledge, this is the first study to demonstrate that IgMhigh B-cells mainly comprise BLV-expressing cells, whereas IgMlow B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.
-
-
-
Development of an ante-mortem diagnostic test for enzootic nasal tumor virus and detection of neutralizing antibodies in host serum
More LessEnzootic nasal adenocarcinoma (ENA) is a contagious neoplasm of the nasal mucosa of sheep and goats and is associated with enzootic nasal tumour virus (ENTV). As ENA is a common disease in North America and there are no vaccines against ENTV-1, diagnostic tests that can identify infected animals and assist with eradication and disease surveillance efforts are greatly needed. In this study, we endeavoured to develop a novel, non-invasive diagnostic tool that could be used not only to validate clinical signs of ENA but also to detect ENTV-1 infection prior to the onset of disease signs (i.e. pre-clinical diagnosis). Cytology, serology and reverse transcription (RT)-PCR-based diagnostic methods were investigated. Although the cytology-based assay was able to detect ENTV-1 infection in some animals, it had poor sensitivity and specificity and thus was not developed further as an ante-mortem diagnostic method. Three different assays, including ELISA, Western blotting and virus neutralization, were developed to detect the presence of ENTV-1-specific antibodies in sheep serum. Whilst a surprisingly large number of sheep mounted an antibody-mediated immune response against ENTV-1, and in some cases neutralizing, correlation with disease status was poor. In contrast, RT-PCR on RNA extracted from nasal swabs reliably detected exogenous ENTV-1 sequences, did not amplify endogenous ovine betaretroviral sequences, demonstrated high concordance with immunohistochemical staining for ENTV-1 envelope protein, and had perfect sensitivity and specificity. This report describes a practical and highly specific RT-PCR technique for the detection of clinical and pre-clinical ENA that may prove beneficial in future control or eradication programmes.
-
- TSE Agents
-
-
-
Increased susceptibility of transgenic mice expressing human PrP to experimental sheep bovine spongiform encephalopathy is not due to increased agent titre in sheep brain tissue
More LessBovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less