- Volume 95, Issue 3, 2014
Volume 95, Issue 3, 2014
- Review
-
-
-
Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges
More LessArthropod-borne viruses (arboviruses) pose a considerable threat to human and animal health, yet effective control measures have proven difficult to implement, and novel means of controlling their replication in arthropod vectors, such as mosquitoes, are urgently required. One of the most exciting approaches to emerge from research on arthropods is the use of the endosymbiotic intracellular bacterium Wolbachia to control arbovirus transmission from mosquito to vertebrate. These α-proteobacteria propagate through insects, in part through modulation of host reproduction, thus ensuring spread through species and maintenance in nature. Since it was discovered that Wolbachia endosymbiosis inhibits insect virus replication in Drosophila species, these bacteria have also been shown to inhibit arbovirus replication and spread in mosquitoes. Importantly, it is not clear how these antiviral effects are mediated. This review will summarize recent work and discuss determinants of antiviral effectiveness that may differ between individual Wolbachia/vector/arbovirus interactions. We will also discuss the application of this approach to field settings and the associated risks.
-
-
- Animal
-
- RNA viruses
-
-
Increasing similarity in the dynamics of influenza in two adjacent subtropical Chinese cities following the relaxation of border restrictions
The drivers of influenza seasonality remain heavily debated, especially in tropical/subtropical regions where influenza activity can peak in winter, during the rainy season, or remain constant throughout the year. We compared the epidemiological and evolutionary patterns of seasonal influenza epidemics in Hong Kong and Shenzhen, two adjacent cities in subtropical southern China. This comparison represents a unique natural experiment, as connectivity between these two cities has increased over the past decade. We found that, whilst summer influenza epidemics in Shenzhen used to peak 1–3 months later than those in Hong Kong, the difference decreased after 2005 (P<0.0001). Phylogenetic analysis revealed that influenza isolates from Shenzhen have become genetically closer to those circulating in Hong Kong over time (P = 0.045). Furthermore, although Shenzhen isolates used to be more distant from the global putative source of influenza viruses than isolates from Hong Kong (P<0.001), this difference has narrowed (P = 0.02). Overall, our study reveals that influenza activities show remarkably distinct epidemiological and evolutionary patterns in adjacent subtropical cities and suggests that human mobility patterns can play a major role in influenza dynamics in the subtropics.
-
-
-
Characterization of African bat henipavirus GH-M74a glycoproteins
In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from Hypsignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse–chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.
-
-
-
Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam
Picornaviruses infecting pigs, described for many years as ‘porcine enteroviruses’, have recently been recognized as distinct viruses within three distinct genera (Teschovirus, Sapelovirus and Enterovirus). To better characterize the epidemiology and genetic diversity of members of the Enterovirus genus, faecal samples from pigs from four provinces in Vietnam were screened by PCR using conserved enterovirus (EV)-specific primers from the 5′ untranslated region (5′ UTR). High rates of infection were recorded in pigs on all farms, with detection frequencies of approximately 90 % in recently weaned pigs but declining to 40 % in those aged over 1 year. No differences in EV detection rates were observed between pigs with and without diarrhoea [74 % (n = 70) compared with 72 % (n = 128)]. Genetic analysis of consensus VP4/VP2 and VP1 sequences amplified from a subset of EV-infected pigs identified species G EVs in all samples. Among these, VP1 sequence comparisons identified six type 1 and seven type 6 variants, while four further VP1 sequences failed to group with any previously identified EV-G types. These have now been formally assigned as EV-G types 8–11 by the Picornavirus Study Group. Comparison of VP1, VP4/VP2, 3Dpol and 5′ UTRs of study samples and those available on public databases showed frequent, bootstrap-supported differences in their phylogenies indicative of extensive within-species recombination between genome regions. In summary, we identified extremely high frequencies of infection with EV-G in pigs in Vietnam, substantial genetic diversity and recombination within the species, and evidence for a much larger number of circulating EV-G types than currently described.
-
-
-
Novel hepatitis E like virus found in Swedish moose
More LessA novel virus was detected in a sample collected from a Swedish moose (Alces alces). The virus was suggested as a member of the Hepeviridae family, although it was found to be highly divergent from the known four genotypes (gt1–4) of hepatitis E virus (HEV). Moose are regularly hunted for consumption in the whole of Scandinavia. Thus, the finding of this virus may be important from several aspects: (a) as a new diverged HEV in a new animal species, and (b) potential unexplored HEV transmission pathways for human infections. Considering these aspects, we have started the molecular characterization of this virus. A 5.1 kb amplicon was sequenced, and corresponded to the partial ORF1, followed by complete ORF2, ORF3 and poly(A) sequence. In comparison with existing HEVs, the moose HEV genome showed a general nucleotide sequence similarity of 37–63 % and an extensively divergent putative ORF3 sequence. The junction region between the ORFs was also highly divergent; however, two putative secondary stem–loop structures were retained when compared to gt1–4, but with altered structural appearance. In the phylogenetic analysis, the moose HEV deviated and formed its own branch between the gt1–4 and other divergent animal HEVs. The characterization of this highly divergent genome provides important information regarding the diversity of HEV infecting various mammalian species. However, further studies are needed to investigate its prevalence in the moose populations and possibly in other host species, including the risk for human infection.
-
-
-
Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays
The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-β), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-β showed the strongst inhibition of MERS-CoV in vitro, with an IC50 of 1.37 U ml−1, 41 times lower than the previously reported IC50 (56.08 U ml−1) of IFN-α2b. IFN-β inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml−1. Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC50 of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-β, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV.
-
-
-
Neutrophils are needed for an effective immune response against pulmonary rat coronavirus infection, but also contribute to pathology
More LessPolymorphonuclear neutrophils (PMN) infiltrate the respiratory tract early after viral infection and can contribute to both host defence and pathology. Coronaviruses are important causes of respiratory tract infections, ranging from mild to severe depending on the viral strain. This study evaluated the role of PMN during a non-fatal pulmonary coronavirus infection in the natural host. Rat coronavirus (RCoV) causes respiratory disease in adult rats, characterized by an early PMN response, viral replication and inflammatory lesions in the lungs, mild weight loss and effective resolution of infection. To determine their role during RCoV infection, PMN were depleted and the effects on disease progression, viral replication, inflammatory response and lung pathology were analysed. Compared with RCoV infection in control animals, PMN-depleted rats had worsened disease with weight loss, clinical signs, mortality and prolonged pulmonary viral replication. PMN-depleted animals had fewer macrophages and lymphocytes in the respiratory tract, corresponding to lower chemokine levels. Combined with in vitro experiments showing that PMN express cytokines and chemokines in response to RCoV-infected alveolar epithelial cells, these findings support a role for PMN in eliciting an inflammatory response to RCoV infection. Despite their critical role in the protection from severe disease, the presence of PMN was correlated with haemorrhagic lesions, epithelial barrier permeability and cellular inflammation in the lungs. This study demonstrated that while PMN are required for an effective antiviral response, they also contribute to lung pathology during RCoV infection.
-
-
-
Demonstration of marmosets (Callithrix jacchus) as a non-human primate model for secondary dengue virus infection: high levels of viraemia and serotype cross-reactive antibody responses consistent with secondary infection of humans
There are four dengue virus (DENV) serotypes. Primary infection with one does not confer protective immunity against the others. We have reported previously that the marmoset (Callithrix jacchus) is a useful primary DENV infection model. It has been reported that secondary DENV infection with a heterotypic serotype induces viraemia kinetics and antibody responses that differ from those in primary infection. Thus, it is important to determine the utility of the marmoset as a model for secondary DENV infection. Marmosets were infected with heterologous DENV by secondary inoculation, and viraemia kinetics and antibody responses were analysed. The marmosets consistently developed high levels of viraemia after the secondary inoculation with heterologous DENV serotypes. IgM responses were lower compared with primary inoculation responses, whilst IgG responses were rapid and high. Neutralizing activities, which possessed serotype cross-reactive activities, were detected as early as 4 days after inoculation. In addition, infectious viraemia titres were higher when assayed with Fcγ receptor-expressing baby hamster kidney (BHK) cells than when assayed with conventional BHK cells, suggesting the presence of infectious virus–antibody immune complexes. After secondary infection with heterotypic DENV, the marmosets demonstrated viraemia kinetics, IgM and IgG responses, and high levels of serotype cross-reactive neutralizing antibody responses, all of which were consistent with secondary DENV infection in humans. The results indicate the marmoset as a useful animal for studying secondary, as well as primary, DENV infection.
-
-
-
Characterization of a new picornavirus isolated from the freshwater fish Lepomis macrochirus
The freshwater fish Lepomis macrochirus (bluegill) is common to North American waters, and important both ecologically and as a sport fish. In 2001 an unknown virus was isolated from bluegills following a bluegill fish kill. This virus was identified as a picornavirus [termed bluegill picornavirus (BGPV)] and a diagnostic reverse transcriptase PCR was developed. A survey of bluegills in Wisconsin waters showed the presence of BGPV in 5 of 17 waters sampled, suggesting the virus is widespread in bluegill populations. Experimental infections of bluegills confirmed that BGPV can cause morbidity and mortality in bluegills. Molecular characterization of BGPV revealed several distinct genome characteristics, the most unusual of which is the presence of a short poly(C) tract in the 3′ UTR. Additionally, the genome encodes a polyprotein lacking a leader peptide and a VP0 maturation cleavage site, and is predicted to encode two distinct 2A proteins. Sequence comparison showed that the virus is most closely related to a phylogenetic cluster of picornaviruses that includes the genera Aquamavirus, Avihepatovirus and Parechovirus. However, it is distinct enough, for example sharing only about 38 % sequence identity to the parechoviruses in the 3D region, that it may represent a new genus in the family Picornaviridae.
-
-
-
Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease
More LessThe emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.
-
-
-
G8P[6] rotaviruses isolated from Amerindian children in Mato Grosso do Sul, Brazil, during 2009: close relationship of the G and P genes with those of bovine and bat strains
More LessDuring the 2009 national group A rotavirus (RVA) surveillance, five unusual strains of the human G8P[6] genotype were detected in Brazilian indian children with acute gastroenteritis. The aim of this study was to carry out sequence analysis of the two outer capsid proteins (VP4 and VP7) and the inner capsid protein (VP6) of the G8P[6] strains detected in order to provide further information on the genetic relationship between human and animal RVA. A total of 68 stool samples, collected in Mato Grosso do Sul during 2009, were tested for RVA using ELISA, following by reverse transcriptase-PCR and sequencing. RVA infection was detected in 7.3 % of samples (5/68). The IAL-RN376 G8 sequence shares a clade with bovine and human strains, displaying highest nucleotide identity to African human strains DRC86 and DRC88, followed by African bovine strain NGRBg8. IAL-RN376 and IAL-RN377 P[6] sequences showed highest identity to human strain R330 from Ireland, and a close genetic relationship to African fruit bat RVA strain KE4852/07. Strains IAL-RN376 and IAL-RN377 display genogroup I VP6 specificity and the I2 genotype, and share high nucleotide identities with human strains B1711, 272-BF and 06-242, and moderate identities with bovine (RUBV81, 86 and KJ9-1) and porcine (HP140) strains. This study suggested that a reassortment between bovine and bat RVA strains could have occurred in animal host(s) preceding the transmission to humans. In the indigenous population, zoonotic transmission is probably fairly frequent as the inhabitants live in close contact with animals under conditions of poor hygiene.
-
-
-
Comparative ultrastructural characterization of African horse sickness virus-infected mammalian and insect cells reveals a novel potential virus release mechanism from insect cells
More LessAfrican horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
-
- DNA viruses
-
-
Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii
More LessEchinoderms are important constituents of marine ecosystems, where they may influence the recruitment success of benthic flora and fauna, and are important consumers of detritus and plant materials. There are currently no described viruses of echinoderms. We used a viral metagenomic approach to examine viral consortia within three urchins – Colobocentrotus atratus, Tripneustes gratilla and Echinometra mathaei – which are common constituents of reef communities in the Hawaiian archipelago. Metagenomic libraries revealed the presence of bacteriophages and densoviruses (family Parvoviridae) in tissues of all three urchins. Densoviruses are known typically to infect terrestrial and aquatic arthropods. Urchin-associated densoviruses were detected by quantitative PCR in all tissues tested, and were also detected in filtered suspended matter (>0.2 µm) from plankton and in sediments at several locations near to where the urchins were collected for metagenomic analysis. To the best of our knowledge, this is the first report of echinoderm-associated viruses, which extends the known host range of parvoviruses.
-
-
-
Checks and balances between human cytomegalovirus replication and indoleamine-2,3-dioxygenase
Despite a rigorous blockade of interferon-γ (IFN-γ) signalling in infected fibroblasts as a mechanism of immune evasion by human cytomegalovirus (HCMV), IFN-γ induced indoleamine-2,3-dioxygenase (IDO) has been proposed to represent the major antiviral restriction factor limiting HCMV replication in epithelial cells. Here we show that HCMV efficiently blocks transcription of IFN-γ-induced IDO mRNA both in infected fibroblasts and epithelial cells even in the presence of a preexisting IFN-induced antiviral state. This interference results in severe suppression of IDO bioactivity in HCMV-infected cells and restoration of vigorous HCMV replication. Depletion of IDO expression nonetheless substantially alleviated the antiviral impact of IFN-γ treatment in both cell types. These findings highlight the effectiveness of this IFN-γ induced effector gene in restricting HCMV productivity, but also the impact of viral counter-measures.
-
-
-
Bovine herpesvirus 5 encodes a unique pattern of microRNAs compared with bovine herpesvirus 1
More LessBovine herpesvirus type 5 (BoHV-5) and bovine herpesvirus 1 (BoHV-1) are two closely related viruses. However, BoHV-5 is responsible for fatal meningitis in calves, while BoHV-1 is associated with infectious rhinotracheitis in cattle, and the mechanism by which the two viruses cause different symptoms is not well understood. In this study, we identified 11 microRNA (miRNA) genes, encoded by the BoHV-5 genome, that were processed into 16 detectable mature miRNAs in productive infection as determined by deep sequencing. We found that 6 out of 16 miRNA genes were present as two copies in the internal repeat and terminal repeat regions, resulting in a total of 17 miRNA-encoding loci distributed in both DNA strands. Surprisingly, BoHV-5 shared only one conservative miRNA with BoHV-1, which was located upstream of the origin of replication. Furthermore, in contrast to BoHV-1, no miRNAs were detected in the unique short region and locus within or near the bovine infected-cell protein 0 and latency-related genes. Variations in both the 5′ and 3′ ends of the reference sequence were observed, resulting in more than one isoform for each miRNA. All of the 16 miRNAs were detectable by stem–loop reverse transcriptase-PCR. The miRNAs with high read numbers were subjected to Northern blot analysis, and all pre-miRNAs and one mature miRNA were detected. Collectively, the data suggest that BoHV-5 encodes a different pattern of miRNAs, which may regulate the life cycle of BoHV-5 and might account for the different pathogenesis of this virus compared with BoHV-1.
-
-
-
Rana grylio virus (RGV) envelope protein 2L: subcellular localization and essential roles in virus infectivity revealed by conditional lethal mutant
More LessRana grylio virus (RGV) is a pathogenic iridovirus that has resulted in high mortality in cultured frog. Here, an envelope protein gene, 2L, was identified from RGV and its possible role in virus infection was investigated. Database searches found that RGV 2L had homologues in all sequenced iridoviruses and is a core gene of iridoviruses. Western blotting detection of purified RGV virions confirmed that 2L protein was associated with virion membrane. Fluorescence localization revealed that 2L protein co-localized with viral factories in RGV infected cells. In co-transfected cells, 2L protein co-localized with two other viral envelope proteins, 22R and 53R. However, 2L protein did not co-localize with the major capsid protein of RGV in co-transfected cells. Meanwhile, fluorescence observation showed that 2L protein co-localized with endoplasmic reticulum, but did not co-localize with mitochondria and Golgi apparatus. Moreover, a conditional lethal mutant virus containing the lac repressor/operator system was constructed to investigate the role of RGV 2L in virus infection. The ability to form plaques and the virus titres were strongly reduced when expression of 2L was repressed. Therefore, the current data showed that 2L protein is essential for virus infection. Our study is the first report, to our knowledge, of co-localization between envelope proteins in iridovirus and provides new insights into the understanding of envelope proteins in iridovirus.
-
- Retroviruses
-
-
Genetic mutations of avian leukosis virus subgroup J strains extended their host range
The genetic diversity of avian leukosis virus subgroup J (ALV-J) is determined not only by the env gene, but also by its 3′ UTR and 3′ LTR. They all play important roles in extending the host range and tumour development. In the present study, one ALV-J strain (ZB110604-6) from Black-Bone Silky Fowl (BSF) and three ALV-J strains (ZB110604-3/4/5) from grey partridge (GP), which bore multiple tumours and breed in one house of Farm A, were demonstrated extending their host to GP, while two other ALV-J strains (LC110515-3/4) from BSF of Farm B could not infect the embryo fibroblast of GP. The BSF is a unique species of chicken in China, while the GP is a close relative of the pheasant that previously demonstrated resistance to ALV-J. Histopathology showed that various tumours were induced by ALV-J in the two species. Phylogenetic tree analysis showed that the isolates from Farms A and B, rather than species, belong to two different clusters of ALV-J. Genetic mutations analysis revealed that the isolates obtained from Farm A showed a higher frequency of mutation in the hypervariable region 2 domain than in other variable regions of the gp85 gene. From the nucleotide alignment of the 3′ UTR and 3′ LTR gene, and the spectrum of tumours observed in this study, we speculate that the deletions or mutations in the redundant transmembrane region, E element and U3 (CAAT boxes, CArG box and Y box) might associate with tumour formation and development. The extension of the host range of ALV-J to the GP suggested that housing different species together provides more opportunities for ALV-J to evolve rapidly.
-
-
-
Human immunodeficiency virus type 1 Vpr polymorphisms associated with progressor and nonprogressor individuals alter Vpr-associated functions
Following infection with Human immunodeficiency virus 1 (HIV-1) there is a remarkable variation in virus replication and disease progression. Both host and viral factors have been implicated in the observed differences in disease status. Here, we focus on understanding the contribution of HIV-1 viral protein R (Vpr) by evaluating the disease-associated Vpr polymorphism and its biological functions from HIV-1 positive rapid progressor (RP) and long-term nonprogressor (LTNP) subjects. Results presented here show distinct variation in phenotypes of Vpr alleles from LTNP and RP subjects. Most notably, the polymorphism of Vpr at R36W and L68M associated with RP shows higher levels of oligomerization, and increased virus replication, whereas R77Q exhibits poor replication kinetics. Interestingly, we did not observe correlation with cell cycle arrest function. Together these results indicate that polymorphisms in Vpr in part may contribute to altered virus replication kinetics leading to the observed differences in disease progression in LTNP and RP groups.
-
- Insect
-
- RNA viruses
-
-
Unusual characteristics of dicistrovirus-derived small RNAs in the small brown planthopper, Laodelphax striatellus
In this study, sequences of small RNA (sRNA) libraries derived from the insect vector Laodelphax striatellus were assembled into contigs and used as queries for database searches. A large number of contigs were highly homologous to the genome sequence of an insect dicistrovirus, himetobi P virus (HiPV). Interestingly, HiPV-derived sRNAs had a wide size distribution, and were relatively abundant throughout the 18–30 nt size range with only a slight peak at 22 nt. HiPV sRNAs had a strong bias towards the sense strand, whilst the antisense sRNAs were predominantly 21 and 22 nt. HiPV sRNAs do not have the typical features of PIWI-interacting RNAs, but their 3′ ends were preferentially cleaved at UA-rich sequences. Our data suggest that HiPV sRNAs may be derived both from activities of the RNA interference pathway and from cleavage of the viral genome by other host RNases.
-
- DNA viruses
-
-
Intrahaemocoelic infection of Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus does not induce tracheal cell basal lamina remodelling
More LessInfection of the lepidopteran insect Trichoplusia ni with the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) by the oral route stimulates activation of host matrix metalloproteases (MMP) and effector caspases, a process dependent on expression of the viral fibroblast growth factor (vFGF). This pathway leads to tracheal cell basal lamina remodelling, enabling virus escape from the primary site of infection, the midgut epithelium, and establishment of efficient systemic infection. In this study, we asked whether the MMP–caspase pathway was also activated following infection by intrahaemocoelic injection. We found that intrahaemocoelic infection did not lead to any observable tracheal cell or midgut epithelium basal lamina remodelling. MMP and caspase activities were not significantly stimulated. We conclude that the main role of the AcMNPV vFGF is in facilitating virus midgut escape.
-
- Plant
-
- RNA viruses
-
-
Estimation of the in vivo recombination rate for a plant RNA virus
More LessPhylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (r g) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of r g = 7.762×10−8 recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of r g = 3.427×10−5 recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.
-
-
-
Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions
The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) inhibits host responses to jasmonic acid (JA), a chemical signal regulating resistance to insects. Previous experiments with a CMV subgroup IA strain and its 2b gene deletion mutant suggested that VSRs might neutralize aphid (Myzus persicae) resistance by inhibiting JA-regulated gene expression. To further investigate this, we examined JA-regulated gene expression and aphid performance in Nicotiana benthamiana infected with Potato virus X, Potato virus Y, Tobacco mosaic virus and a subgroup II CMV strain, as well as in transgenic plants expressing corresponding VSRs (p25, HC-Pro, 126 kDa and 2b). All the viruses or their VSRs inhibited JA-induced gene expression. However, this did not always correlate with enhanced aphid performance. Thus, VSRs are not the sole viral determinants of virus-induced changes in host–aphid interactions and interference with JA-regulated gene expression cannot completely explain enhanced aphid performance on virus-infected plants.
-
- Fungal Viruses
-
-
-
Biological properties and expression strategy of rosellinia necatrix megabirnavirus 1 analysed in an experimental host, Cryphonectria parasitica
More LessRosellinia necatrix megabirnavirus 1 (RnMBV1) with a bipartite dsRNA genome (dsRNA1 and dsRNA2) confers hypovirulence to its natural host, the white root rot fungus, and is thus regarded as a potential virocontrol (biocontrol) agent. Each segment has two large ORFs: ORF1 and partially overlapping ORF2 on dsRNA1 encode the major capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), whilst ORF3 and ORF4 on dsRNA2 encode polypeptides with unknown functions. Here, we report the biological and molecular characterization of this virus in the chestnut blight fungus, Cryphonectria parasitica, a filamentous fungus that has been used as a model for mycovirus research. Transfection with purified RnMBV1 particles into an RNA-silencing-defective strain (Δdcl-2) of C. parasitica and subsequent anastomosis with the WT strain (EP155) resulted in stable persistent infection in both host strains. However, accumulation levels in the two strains were different, being ~20-fold higher in Δdcl-2 than in EP155. Intriguingly, whilst RnMBV1 reduced both virulence and growth rate in Δdcl-2, it attenuated virulence without affecting significantly other traits in EP155. Western blot analysis using antiserum against recombinant proteins encoded by either ORF1 or ORF2 demonstrated the presence of a 250 kDa protein in purified virion preparations, suggesting that RdRp is expressed as a CP fusion product via a −1 frameshift. Antiserum against the ORF3-encoded protein allowed the detection of 150, 30 and 23 kDa polypeptides specifically in RnMBV1-infected mycelia. Some properties of an RnMBV1 mutant with genome rearrangements, which occurred after transfection of Δdcl-2 and EP155, were also presented. This study provides an additional example of C. parasitica serving as a versatile, heterologous fungus for exploring virus–host interactions and virus gene expression strategies.
-
-
- Phage
-
-
-
Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain
More LessBacteriophages have been found to be the most abundant and also potentially most diverse biological entities on Earth. In the present study, Bacillus phages were isolated rapidly and shown to have a high degree of diversity. The genomes of a newly isolated phage, phiCM3, and a prophage, proCM3, from the Bacillus thuringiensis strain YM-03 were sequenced and characterized. Comparative genome analysis showed that the phiCM3 genome is highly similar to the genomes of eight other Bacillus phages and seven of these phages were classified as the Wβ group of phages. Analysis of the differential evolution of the genes in the Wβ-group phages indicated that the genes encoding the antirepressor and tail fibre protein were more highly conserved than those encoding the major capsid protein, DNA replication protein, and RNA polymerase σ factor, which might have diverged to acquire mechanisms suitable for survival in different microbial hosts. Genome analysis of proCM3 revealed that proCM3 might be a defective phage because of mutations in the minor structural protein, and it was not inducible by mitomycin C treatment. The proCM3 genome was similar to those of two lytic Bacillus phages in sequence, but had a different genomic structure, composed of three regions in a different order. These data suggest that the three phages might have had a common ancestor and that genome rearrangement might have occurred during evolution. The findings of this study enrich our current knowledge of Bacillus phage diversity and evolution, especially for the Wβ-group and TP21-L-like phages, and may help the development of practical applications of Bacillus phages.
-
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)