- Volume 94, Issue 1, 2013
Volume 94, Issue 1, 2013
- Animal
-
- DNA viruses
-
-
Temporal classification and mapping of non-polyadenylated transcripts of an invertebrate iridovirus
More LessThe temporal expression of the 54 Chilo iridescent virus (CIV) virion protein genes was investigated by combining drug treatments that inhibit protein or DNA synthesis and an RT-PCR strategy particularly suitable for non-polyadenylated mRNAs. This method generates a uniform 3′ terminus by ligation of a 5′-phosphorylated oligonucleotide to the 3′ end of the transcript that is recognized by a complementary primer during RT-PCR. This analysis showed that CIV virion proteins are encoded by genes in all three predetermined temporal classes: 23 immediate-early, 11 delayed-early and seven late virion gene transcripts were identified and assigned to ORFs. Early transcription of many virion protein genes supports the notion that virion proteins may also play essential roles in the initial stages of infection. In addition, some of the early gene products present in the virion may reflect the intracellular path that the virus follows during infection.
-
-
-
Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus–host interactions.
-
- Plant
-
-
-
Tropism, compartmentalization and retention of banana bunchy top virus (Nanoviridae) in the aphid vector Pentalonia nigronervosa
More LessPlant viruses of the families Luteoviridae and Geminiviridae rely on hemipteran vectors for the infection of their hosts. Several lines of evidence have revealed that these viruses are transmitted by competent vectors in a circulative manner, involving entry into the vector’s body and the crossing of epithelial tissues forming the alimentary tract and the salivary glands. Similar to luteovirids and geminiviruses, a third family of plant viruses, the family Nanoviridae, have also been reported to be transmitted by aphids in a circulative manner. However, there is limited direct evidence of a possible path of translocation through the aphid vectors. Here, we used time-course experiments and transmission assays coupled with real-time PCR and immunofluorescence assays on dissected tissues to examine the translocation, compartmentalization and retention of banana bunchy top virus (BBTV) into the aphid vector Pentalonia nigronervosa. Our results indicate that BBTV translocates rapidly through the aphid vector; it is internalized into the anterior midgut in which it accumulates and is retained at concentrations higher than either the haemolymph or the principal salivary glands. Despite the large increase in viral concentration, we have failed to detect BBTV transcripts with RT-PCR. When tissues were not permeabilized, BBTV localized as distinct puncta in the proximity of the basal surface of the cells forming the anterior midgut and principal salivary glands, suggesting an on-going process of virion escape and internalization, respectively. Interestingly, we document that those organs can have direct contact within the aphid body, suggesting a possible haemolymph-independent translocation path.
-
-
-
-
Molecular characterization of two evolutionarily distinct endornaviruses co-infecting common bean (Phaseolus vulgaris)
Two high-molecular-mass dsRNAs of approximately 14 and 15 kbp were isolated from the common bean (Phaseolus vulgaris) cultivar Black Turtle Soup. These dsRNAs did not appear to cause obvious disease symptoms, and were transmitted through seeds at nearly 100 % efficiency. Sequence information indicates that they are the genomes of distinct endornavirus species, for which the names Phaseolus vulgaris endornavirus 1 (PvEV-1) and Phaseolus vulgaris endornavirus 2 (PvEV-2) are proposed. The PvEV-1 genome consists of 13 908 bp and potentially encodes a single polyprotein of 4496 aa, while that of PvEV-2 consists of 14 820 bp and potentially encodes a single ORF of 4851 aa. PvEV-1 is more similar to Oryza sativa endornavirus, while PvEV-2 is more similar to bell pepper endornavirus. Both viruses have a site-specific nick near the 5′ region of the coding strand, which is a common property of the endornaviruses. Their polyproteins contain domains of RNA helicase, UDP-glycosyltransferase and RNA-dependent RNA polymerase, which are conserved in other endornaviruses. However, a viral methyltransferase domain was found in the N-terminal region of PvEV-2, but was absent in PvEV-1. Results of cell-fractionation studies suggested that their subcellular localizations were different. Most endornavirus-infected bean cultivars tested were co-infected with both viruses.
-
-
-
Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments
ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.
-
- Other agents
-
-
-
PrP-associated resistance to scrapie in five highly infected goat herds
The PrP gene polymorphisms at codons 142 (I/M), 154 (R/H), 211 (R/Q), 222 (Q/K) and 240 (S/P) and their association with susceptibility to classical scrapie infection were investigated in five French goat herds displaying a high disease prevalence (>10 %). On the basis of PrPSc detection in the central nervous system and in various lymphoid tissues, 301 of 1343 goats were found to be scrapie infected. The statistical analyses indicated that while P240 mutation had no direct impact on scrapie infection risk, the H154, Q211 and K222 mutations were associated with high resistance to scrapie. The M142 mutated allele was associated with a limited protection level against the disease. These results further reinforce the view that, like in sheep, the control and eradication of classical scrapie through the selection of certain PrP alleles could be envisaged in commercial goat population.
-
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)