- Volume 92, Issue 9, 2011
Volume 92, Issue 9, 2011
- Animal
-
- DNA viruses
-
-
Lack of type-specific concordance between human papillomavirus (HPV) serology and HPV DNA detection in the uterine cervix and oral mucosa
There is limited knowledge about longitudinal genotype-specific concordance between human papillomavirus (HPV) serology and co-existent presence of HPV DNA in the uterine cervix. The role of oral HPV infections in inducing serological response is unclear, as is the effect of HPV antibodies on the outcome of oral HPV infections. The present study is part of the Finnish Family HPV Study designed to evaluate dynamics of HPV infections within families. Here, we correlated the point prevalence of HPV6, 11, 16, 18 and 45 antibodies and concomitant genotype-specific HPV DNA detection in cervical and oral samples of 323 mothers during their 3 year (mean 37.5 months) follow-up. The mean age of these pregnant mothers at enrolment (third trimester) was 25.5 years. HPV antibodies were analysed with multiplex HPV serology and HPV genotyping was performed using a Multimetrix kit (Progen Biotechnik). There was no concordance between cervical DNA detection and co-existent seropositivity, and the same was true even in samples taken 12 months apart. Women who cleared their cervical HPV16 infection had the highest HPV16 antibody levels, whereas those who acquired incident HPV16 infections had the lowest antibody levels. Neither the presence nor the dynamics of oral HPV DNA had any correlation with HPV serology.
-
-
-
Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination
Despite the recent discovery of novel bocaviruses from porcine samples, their genetic evolution and diversity are poorly understood. This study reports the identification and complete genome characterization of two novel parvoviruses, porcine bocavirus 3 (PBoV3) and porcine bocavirus 4 (PBoV4), from various porcine tissues/samples, displaying marked intra- and inter-host genetic diversity, with recombination events. Bocaviruses were detected by PCR among 16.5 % (55/333) of porcine samples (lymph nodes, serum, nasopharyngeal and faecal samples) from healthy, sick or deceased pigs from farms and a slaughterhouse in Hong Kong. As marked nucleotide polymorphisms were observed in the partial VP1 sequences, complete VP1 genes from one nasopharyngeal and three faecal specimens were cloned and sequenced, which suggested the presence of two different bocaviruses and demonstrated significant intra- and inter-host genetic diversity. Complete genome sequences revealed the presence of two bocaviruses, PBoV3 and PBoV4, in a faecal and nasopharyngeal specimen, respectively, with two genotypes, PBoV4-1 and PBoV4-2, in the latter. Their genomes encoded three ORFs, characteristic of bocaviruses. Phylogenetic analysis showed that they were distantly related to other bocaviruses, forming a distinct cluster within the genus. Recombination analysis showed possible recombination events among VP1 sequences of PBoV4 strains from a faecal specimen, with two breakpoints identified (with a 68 and 71 bp region), suggesting that different strains/variants within the same host could have arisen from recombination. This is the first report describing marked sequence diversity and the co-existence of two viruses of the family Parvoviridae within the same host, which may have originated from and, in turn, facilitated recombination.
-
-
-
Transcriptomic profiling of Microplitis demolitor bracovirus reveals host, tissue and stage-specific patterns of activity
More LessThe polydnaviruses (PDVs) are a family of DNA viruses that are symbiotically associated with parasitoid wasps. The transcription of particular genes or gene-family members have been reported for several PDVs, but no studies have characterized the spatio-temporal patterns of expression for the entire complement of predicted genes in the encapsidated genome of any PDV isolate. The braconid wasp Microplitis demolitor carries the PDV Microplitis demolitor bracovirus (MdBV) and parasitizes larval stage Pseudoplusia (Chrysodeixis) includens. The encapsidated genome consists of 15 genomic segments with 51 predicted ORFs encoding proteins ≥100 aa. A majority of these ORFs form four multimember gene families (ptp, ank, glc and egf) while the remaining ORFs consist of single copy (orph) genes. Here we used RT-PCR and quantitative real-time PCR methods to profile the encapsidated transcriptome of MdBV in P. includens and M. demolitor. Our results indicate that most predicted genes are expressed in P. includens. Spatial patterns of expression in P. includens differed among genes, but temporal patterns of expression were generally similar, with transcript abundance progressively declining between 24 and 120 h. A subset of ptp, ank and orph genes were also expressed in adult female but not male M. demolitor. Only one encapsidated gene (ank-H4) was expressed in all life stages of M. demolitor, albeit at much lower levels than in P. includens. However, another encapsidated gene (orph-B1) was expressed in adult M. demolitor at similar levels to those detected in P. includens.
-
- Plant
-
-
-
Specific amino acids of Olive mild mosaic virus coat protein are involved in transmission by Olpidium brassicae
More LessTransmission of Olive mild mosaic virus (OMMV) is facilitated by Olpidium brassicae (Wor.) Dang. An OMMV mutant (OMMVL11) containing two changes in the coat protein (CP), asparagine to tyrosine at position 189 and alanine to threonine at position 216, has been shown not to be Olpidium brassicae-transmissible owing to inefficient attachment of virions to zoospores. In this study, these amino acid changes were separately introduced into the OMMV genome through site-directed mutagenesis, and the asparagine-to-tyrosine change was shown to be largely responsible for the loss of transmission. Analysis of the structure of OMMV CP by comparative modelling approaches showed that this change is located in the interior of the virus particle and the alanine-to-threonine change is exposed on the surface. The asparagine-to-tyrosine change may indirectly affect attachment via changes in the conformation of viral CP subunits, altering the receptor binding site and thus preventing binding to the fungal zoospore.
-
-
-
-
Viroplasm matrix protein Pns9 from rice gall dwarf virus forms an octameric cylindrical structure
The non-structural Pns9 protein of rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family Reoviridae. Immunofluorescence and immunoelectron microscopy of RGDV-infected vector cells in monolayers, using antibodies against Pns9 of RGDV and expression of Pns9 in Spodoptera frugiperda cells, demonstrated that Pns9 is the minimal viral factor necessary for formation of viroplasm inclusion during infection by RGDV. When Pns9 in solution was observed under a conventional electron microscope, it appeared as ring-like aggregates of approximately 100 Å in diameter. Cryo-electron microscopic analysis of these aggregates revealed cylinders of octameric Pns9, whose dimensions were similar to those observed under the conventional electron microscope. Octamerization of Pns9 in solution was confirmed by the results of size-exclusion chromatography. Among proteins of viruses that belong to the family Reoviridae whose three-dimensional structures are available, a matrix protein of the viroplasm of rotavirus, NSP2, forms similar octamers, an observation that suggests similar roles for Pns9 and NSP2 in morphogenesis in animal-infecting and in plant-infecting reoviruses.
-
-
-
The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro
The helper component-proteinase (HC-Pro) is a multifunctional protein found among potyviruses. With respect to its silencing suppressor function, small RNA binding appears to be the major activity of HC-Pro. HC-Pro could also exhibit other suppressor activities. HC-Pro may inhibit the Hua Enhancer 1 (HEN1) activity. There is indirect evidence showing that either transient or stable expression of HC-Pro in plants results in an increase of non-methylated small RNAs. Here, we demonstrated that recombinant Zucchini yellow mosaic virus (ZYMV) HC-Pro inhibited the methyltransferase activity of HEN1 in vitro. Moreover, we found that the HC-ProFINK mutant, which has lost small RNA-binding activity, inhibited HEN1 activity, while the truncated proteins and total soluble bacterial proteins did not. Using the ELISA-binding assay, we provided evidence that the HC-ProFRNK wild-type and HC-ProFINK both bound to HEN1, with HC-ProFRNK binding stronger than HC-ProFINK. Motif mapping analysis revealed that the amino acids located between positions 139 and 320 of ZYMV HC-Pro were associated with HEN1 interaction.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 73 (1992 - 2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)