- Volume 92, Issue 4, 2011
Volume 92, Issue 4, 2011
- Animal
-
- DNA viruses
-
-
Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates
More LessPsittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ∼2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94 % genome-wide sequence identity as a strain demarcation threshold, with isolates sharing >94 % identity belonging to the same strain, and strain subtypes sharing >98 % identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed.
-
-
-
Possible cross-species transmission of circoviruses and cycloviruses among farm animals
Circoviruses consist of highly prevalent and genetically diverse porcine and avian pathogens. The genomes of cycloviruses, a proposed new genus in the family Circoviridae, were recently identified in human and chimpanzee faeces. Here, six cyclovirus and four circovirus genomes from the tissues of chickens, goats, cows, and a bat were amplified and sequenced using rolling-circle amplification and inverse PCR. A goat cyclovirus was nearly identical to a cyclovirus from a cow. USA beef contained circoviruses with >99 % similarity to porcine circovirus 2b. Circoviruses in chicken were related to those of pigeons. The close genetic similarity of a subset of cycloviruses and circoviruses replicating in distinct animal species may reflect recent cross-species transmissions. Further studies will be required to determine the impact of these highly prevalent infections on the health of farm animals.
-
-
-
Different contribution of bovine papillomavirus type 1 oncoproteins to the transformation of equine fibroblasts
More LessEquine sarcoids represent the most common skin tumours in equids worldwide, characterized by localized invasion, rare regression and high recurrence following surgical intervention. Bovine papillomavirus type 1 (BPV-1) and less commonly BPV-2 are now widely recognized as the causative agents of the disease. Fibroblasts isolated from sarcoids are highly invasive. Invasion is associated with a high level of viral gene expression and matrix metalloproteinase upregulation. However, it remains unclear to what extent BPV-1 proteins are involved in the transformation of equine cells. To address this question, the individual viral genes E5, E6 and E7 were overexpressed in normal equine fibroblasts (EqPalF cells) and in the immortal but not fully transformed sarcoid-derived EqS02a cell line. The proliferation and invasiveness of these cell lines were assessed. E5 and E6 were found to be responsible for the enhanced cell proliferation and induction of increased invasion in EqS02a cells, whilst E7 appeared to enhance cell anchorage independence. Knockdown of BPV-1 oncogene expression by small interfering RNA reversed the transformed phenotype of sarcoid fibroblasts. Together, these observations strongly suggest that BPV-1 proteins play indispensable roles in the transformation of equine fibroblasts. These data also suggest that BPV-1 proteins are potential drug targets for equine sarcoid therapy.
-
-
-
Complete coding sequences and phylogenetic analysis of porcine bocavirus
More LessHere we report, for the first time, the nearly full-length genome sequence of porcine bocavirus (PBoV), a recently discovered parvovirus from pigs. Phylogenetic trees based on this genome sequence showed that PBoV belongs to the branch containing the genus Bocavirus, which comprises canine minute virus (CnMV), bovine parvovirus, gorilla bocavirus and human bocavirus (HBoV), and was most closely related to the group containing CnMV. PBoV was predicted to contain three potential ORFs encoding the non-structural protein NS1, the characteristic NP1 protein and the capsid protein VP1/VP2, with an organization similar to that of known bocaviruses. Interestingly, the NS1 gene of PBoV was more similar in length to the homogeneous gene found in HBoV than to those of other known bocaviruses. In addition, highly conserved unique splice-donor and -acceptor sites were identified in the NS1 gene of HBoV and PBoV.
-
-
-
Detection and characterization of a novel polyomavirus in wild rodents
To investigate polyomavirus infection in wild rodents, we analysed DNA samples from the spleens of 100 wild rodents from Zambia using a broad-spectrum PCR-based assay. A previously unknown polyomavirus genome was identified in a sample from a multimammate mouse (Mastomys species) and the entire viral genome of 4899 bp was subsequently sequenced. This viral genome contained potential ORFs for the capsid proteins, VP1, VP2 and VP3, and early proteins, small t antigen and large T antigen. Phylogenetic analysis showed that it was a novel member of the family Polyomaviridae, and thus the virus was tentatively named mastomys polyomavirus. After transfection of the viral genome into several mammalian cell lines, transient expression of the VP1 and large T antigen proteins was confirmed by immunoblotting and immunocytochemical analyses. Comparison of large T antigen function in mastomys polyomavirus with that in rhesus monkey polyomavirus SV40 and human polyomavirus JC virus revealed that the large T antigen from mastomys polyomavirus interacted with the tumour suppressor protein pRb, but not with p53.
-
- Plant
-
-
-
Evolution of cassava brown streak disease-associated viruses
Cassava brown streak disease (CBSD) has occurred in the Indian Ocean coastal lowlands and some areas of Malawi in East Africa for decades, and makes the storage roots of cassava unsuitable for consumption. CBSD is associated with Cassava brown streak virus (CBSV) and the recently described Ugandan cassava brown streak virus (UCBSV) [picorna-like (+)ssRNA viruses; genus Ipomovirus; family Potyviridae]. This study reports the first comprehensive analysis on how evolution is shaping the populations of CBSV and UCBSV. The complete genomes of CBSV and UCBSV (four and eight isolates, respectively) were 69.0–70.3 and 73.6–74.4 % identical at the nucleotide and polyprotein amino acid sequence levels, respectively. They contained predictable sites of homologous recombination, mostly in the 3′-proximal part (NIb-HAM1h-CP-3′-UTR) of the genome, but no evidence of recombination between the two viruses was found. The CP-encoding sequences of 22 and 45 isolates of CBSV and UCBSV analysed, respectively, were mainly under purifying selection; however, several sites in the central part of CBSV CP were subjected to positive selection. HAM1h (putative nucleoside triphosphate pyrophosphatase) was the least similar protein between CBSV and UCBSV (aa identity approx. 55 %). Both termini of HAM1h contained sites under positive selection in UCBSV. The data imply an on-going but somewhat different evolution of CBSV and UCBSV, which is congruent with the recent widespread outbreak of UCBSV in cassava crops in the highland areas (>1000 m above sea level) of East Africa where CBSD has not caused significant problems in the past.
-
-
-
-
Deletions and recombinations with the RNA1 3′ ends of different tobraviruses have created a multitude of tobacco rattle virus TCM-related RNA2 species in Alstroemeria and tulip
More LessIn vegetatively propagated Alstroemeria plants that showed pronounced stunting and necrotic leaf spots, a tobravirus infection was diagnosed in which one tobacco rattle virus (TRV, strain AL) RNA1 species was associated with seven different RNA2 species. The latter differed considerably in size and in the types of their 3′ RNA1-related sequences. The 5′ RNA2-specific part of all these RNA2 molecules showed almost 100 % sequence identity with that of RNA2 of the TRV isolate TCM from tulip, but in some of these RNA2 molecules it was shorter than in the TCM isolate, whereas in others it was longer. One of the TRV AL RNA2 molecules, i.e. TC3′PE-a, contained the full set of three full-length RNA2-specific ORFs (ORF2a, -2b and -2c), whereas the previously analysed TCM sequence contained only ORF2a and -2b. In four of these TRV AL RNA2 molecules, i.e. those that had a relatively short RNA2-specific part, the 3′ end was identical to that of the cognate TRV AL RNA1, but in the other three, which had a long RNA2-specific part, it was closely related to that of pea early browning virus (PEBV) RNA1, which was not detected in the infected plants. A comparison with previously described TRV/PEBV RNA2 recombinants suggested that the various TRV AL RNA2 molecules may represent various steps and side steps in an evolutionary process, which is apt to open the wide host range of TRV also to PEBV-derived RNA2 species.
-
- Phage
-
-
-
Persistence of bacteriophage T4 in a starved Escherichia coli culture: evidence for the presence of phage subpopulations
More LessBacteriophage T4 is able to adjust its development to the growth parameters of the host cell. Here, we present evidence for the production of two different subpopulations of phage particles, which differ in their ability to infect starved Escherichia coli cells. The ability of phage T4 to produce a fraction of virions unable to infect starved cells is linked to the functions of genes rI and rIII, as well as rIIA. This may represent the adaptation of phage T4 in order to persist in unfavourable environmental conditions.
-
-
- Retraction
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 73 (1992 - 2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)