- Volume 92, Issue 12, 2011
Volume 92, Issue 12, 2011
- Animal
-
- RNA viruses
-
-
Replication-incompetent influenza A viruses that stably express a foreign gene
A biologically contained influenza A virus that stably expresses a foreign gene can be effectively traced, used to generate a novel multivalent vaccine and have its replication easily assessed, all while satisfying safety concerns regarding pathogenicity or reversion. This study generated a PB2-knockout (PB2-KO) influenza virus that harboured the GFP reporter gene in the coding region of its PB2 viral RNA (vRNA). Replication of the PB2-KO virus was restricted to a cell line stably expressing the PB2 protein. The GFP gene-encoding PB2 vRNA was stably incorporated into progeny viruses during replication in PB2-expressing cells. The GFP gene was expressed in virus-infected cells with no evidence of recombination between the recombinant PB2 vRNA and the PB2 protein mRNA. Furthermore, other reporter genes and the haemagglutinin and neuraminidase genes of different virus strains were accommodated by the PB2-KO virus. Finally, the PB2-KO virus was used to establish an improved assay to screen neutralizing antibodies against influenza viruses by using reporter gene expression as an indicator of virus infection rather than by observing cytopathic effect. These results indicate that the PB2-KO virus has the potential to be a valuable tool for basic and applied influenza virus research.
-
-
-
Junín virus infection impairs stress-granule formation in Vero cells treated with arsenite via inhibition of eIF2α phosphorylation
More LessStress granules (SGs) are ephemeral cytoplasmic aggregates containing stalled translation preinitiation complexes involved in mRNA storage and triage during the cellular stress response. SG formation is triggered by the phosphorylation of the alpha subunit of eIF2 (eIF2α), which provokes a dramatic blockage of protein translation. Our results demonstrate that acute infection of Vero cells with the arenavirus Junín (JUNV), aetiological agent of Argentine haemorrhagic fever, does not induce the formation of SGs. Moreover, JUNV negatively modulates SG formation in infected cells stressed with arsenite, and this inhibition correlates with low levels of eIF2α phosphorylation. Transient expression of JUNV nucleoprotein (N) or the glycoprotein precursor (GPC), but not of the matrix protein (Z), inhibits SG formation in a similar manner, comparable to infectious virus. Expression of N and GPC also impaired eIF2α phosphorylation triggered by arsenite. A moderate inhibition of SG formation was also observed when DTT and thapsigargin were employed as stress inducers. In contrast, no inhibition was observed when infected cells were treated with hippuristanol, a translational inhibitor and inducer of SGs that bypasses the requirement for eIF2α phosphorylation. Finally, we analysed SG formation in persistently JUNV-infected cells, where N and GPC are virtually absent and truncated N products are expressed abundantly. We found that persistently infected cells show a quite normal response to arsenite, with SG formation comparable to that of uninfected cells. This suggests that the presence of GPC and/or N is crucial to control the stress response upon JUNV infection of Vero cells.
-
-
-
Genus-specific recruitment of filovirus ribonucleoprotein complexes into budding particles
The filoviral matrix protein VP40 orchestrates virus morphogenesis and budding. To do this it interacts with both the glycoprotein (GP1,2) and the ribonucleoprotein (RNP) complex components; however, these interactions are still not well understood. Here we show that for efficient VP40-driven formation of transcription and replication-competent virus-like particles (trVLPs), which contain both an RNP complex and GP1,2, the RNP components and VP40, but not GP1,2 and VP40, must be from the same genus. trVLP preparations contained both spherical and filamentous particles, but only the latter were able to infect target cells and to lead to genome replication and transcription. Interestingly, the genus specificity of the VP40–RNP interactions was specific to the formation of filamentous trVLPs, but not to spherical particles. These results not only further our understanding of VP40 interactions, but also suggest that special care is required when using trVLP or VLP systems to model virus morphogenesis.
-
-
-
Generation and characterization of a recombinant Rift Valley fever virus expressing a V5 epitope-tagged RNA-dependent RNA polymerase
More LessThe viral RNA-dependent RNA polymerase (RdRp; L protein) of Rift Valley fever virus (RVFV; family Bunyaviridae) is a 238 kDa protein that is crucial for the life cycle of the virus, as it catalyses both transcription of viral mRNAs and replication of the tripartite genome. Despite its importance, little is known about the intracellular distribution of the polymerase or its other roles during infection, primarily because of lack of specific antibodies that recognize L protein. To begin to address these questions we investigated whether the RVFV (MP12 strain) polymerase could tolerate insertion of the V5 epitope, as has been previously demonstrated for the Bunyamwera virus L protein. Insertion of the 14 aa epitope into the polymerase sequence at aa 1852 resulted in a polymerase that retained functionality in a minigenome assay, and we were able to rescue recombinant viruses that expressed the modified L protein by reverse genetics. The L protein could be detected in infected cells by Western blotting with anti-V5 antibodies. Examination of recombinant virus-infected cells by immunofluorescence revealed a punctate perinuclear or cytoplasmic distribution of the polymerase that co-localized with the nucleocapsid protein. The generation of RVFV expressing a tagged RdRp will allow detailed examination of the role of the viral polymerase in the virus life cycle.
-
-
-
Modification of the trypsin cleavage site of rotavirus VP4 to a furin-sensitive form does not enhance replication efficiency
The infectivity of rotavirus (RV) is dependent on an activation process triggered by the proteolytic cleavage of its spike protein VP4. This activation cleavage is performed by exogenous trypsin in the lumen of the intestines in vivo. Here, we report the generation and characterization of a recombinant RV expressing cDNA-derived VP4 with a modified cleavage site (arginine at position 247) recognized by endogenous furin as well as exogenous trypsin. Unexpectedly, the mutant virus (KU//rVP4-R247Furin) was incapable of plaque formation without an exogenous protease, although the mutant VP4s on virions were efficiently cleaved by endogenous furin. Furthermore, KU//rVP4-R247Furin showed impaired infectivity in MA104 and CV-1 cells even in the presence of trypsin compared with the parental virus carrying authentic VP4 (KU//rVP4). Although the total titre of KU//rVP4-R247Furin was comparable to that of KU//rVP4, the extracellular titre of KU//rVP4-R247Furin was markedly lower than its cell-associated titre in comparison with that of KU//rVP4. In contrast, the two viruses showed similar growth in a furin-defective LoVo cell line. These results suggest that intracellular cleavage of VP4 by furin may be disadvantageous for RV infectivity, possibly due to an inefficient virus release process.
-
-
-
Genetic divergence and classification of non-structural protein 1 among porcine rotaviruses of species B
More LessPorcine rotavirus B (RVB) has frequently been detected in diarrhoea of suckling and weaned pigs. Moreover, epidemiological studies using ELISA have demonstrated high antibody prevalence in sera from sows, indicating that RVB infections are widespread. Because it is difficult to propagate RVBs serially in cell culture, genetic analysis of RNA segments of porcine RVBs other than those encoding VP7 and NSP2 has been scarcely performed. We conducted sequence and phylogenetic analyses focusing on non-structural protein 1 (NSP1), using 15 porcine RVB strains isolated from diarrhoeic faeces collected around Japan. Sequence analysis showed that the porcine NSP1 gene contains two overlapping ORFs. Especially, peptide 2 of NSP1 retains highly conserved cysteine and histidine residues among RVBs. Comparison of NSP1 nucleotide and deduced amino acid sequences from porcine RVB strains demonstrated low identities to those from other RVB strains. Phylogenetic analysis of RVB NSP1 revealed the presence of murine, human, ovine, bovine and porcine clusters. Furthermore, the NSP1 genes of porcine RVBs were divided into three genotypes, suggesting the possibility that porcine species might be an original host of RVB infection. Of nine strains common to those used in our previous study, only one strain was classified into a different genotype from the others in the analysis of VP7, in contrast to the analysis of NSP1, where all belonged to the same cluster. This fact suggests the occurrence of gene reassortment among porcine RVBs. These findings should provide more beneficent information to understand the evolution and functions of RVBs.
-
-
-
Evolutionary relationship of the L- and M-class genome segments of bat-borne fusogenic orthoreoviruses in Malaysia and Australia
More LessWe previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.
-
-
-
Analysis of the human immunodeficiency virus type 1 M group Vpu domains involved in antagonizing tetherin
More LessZoonosis of chimpanzee simian immunodeficiency virus cpz to humans has given rise to both pandemic (M) and non-pandemic (O, N and P) groups of human immunodeficiency virus type-1 (HIV). These lentiviruses encode accessory proteins, including Vpu, which has been shown to reduce CD4 levels on the cell surface, as well as increase virion release from the cell by antagonizing tetherin (CD317, BST2). Here, we confirm that O group Vpus (Ca9 and BCF06) are unable to counteract tetherin or downregulate the protein from the cell surface, although they are still able to reduce cell-surface CD4 levels. We hypothesize that this inability to antagonize tetherin may have contributed to O group viruses failing to achieve pandemic levels of human-to-human transmission. Characterization of chimeric O/M group Vpus and Vpu mutants demonstrate that the Vpu–tetherin interaction is complex, involving several domains. We identify specific residues within the transmembrane proximal region that, along with the transmembrane domain, are crucial for tetherin counteraction and enhanced virion release. We have also shown that the critical domains are responsible for the localization of M group Vpu to the trans-Golgi network, where it relocalizes tetherin to counteract its function. This work sheds light on the acquisition of anti-tetherin activity and the molecular details of pandemic HIV infection in humans.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)