- Volume 90, Issue 12, 2009
Volume 90, Issue 12, 2009
- Animal
-
- DNA viruses
-
-
Bovine papillomavirus type 1 oncoprotein E5 inhibits equine MHC class I and interacts with equine MHC I heavy chain
Bovine papillomavirus type 1 is one of the aetiological agents of equine sarcoids. The viral major oncoprotein E5 is expressed in virtually all sarcoids, sarcoid cell lines and in vitro-transformed equine fibroblasts. To ascertain whether E5 behaves in equine cells as it does in bovine cells, we introduced the E5 open reading frame into fetal equine fibroblasts (EqPalF). As observed in primary bovine fibroblasts (BoPalF), E5 by itself could not immortalize EqPalF and an immortalizing gene, such as human telomerase (hTERT/hT), was required for the cells to survive selection. The EqPalF-hT-1E5 cells were morphologically transformed, elongated with many pseudopodia and capable of forming foci. Equine major histocompatibility complex class I (MHC I) was inhibited in these cells at least at two levels: transcription of MHC I heavy chain was inhibited and the MHC I complex was retained in the Golgi apparatus and prevented from reaching the cell surface. We conclude that, as in bovine cells and tumours, E5 is a player in the transformation of equine cells and the induction of sarcoids, and a potential major cause of MHC I downregulation and hence poor immune clearance of tumour cells.
-
-
-
Establishment of an insect cell clone that harbours a partial baculoviral genome and is resistant to homologous virus infection
More LessAfter serially undiluted passage of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV), persistently infected Se301 cells were established. A cell strain, in which no polyhedra or viral particles were observed, was cloned and designated P8-Se301-C1. The P8-Se301-C1 cells are morphologically similar to but grow slower than Se301 cells and they can homologously interfere with SeMNPV. PCR analysis showed that SeMNPV ie-0 and polyhedrin genes were present but DNA polymerase and orf67 genes were absent in P8-Se301-C1, suggesting that the cells harbour incomplete SeMNPV genomes. Dot-blot analysis demonstrated that 0.32±0.16 ng SeMNPV DNA was present in 1.25×105 P8-Se301-C1 cells. A quantitative real-time PCR assay showed that there were 13.2±4.3 copies of the SeMNPV polyhedrin gene in each cell. Nested RT-PCR demonstrated the presence of SeMNPV polyhedrin transcripts in P8-Se301-C1 cells. The fact that P8-Se301-C1 cells carry low levels of partial viral genome but do not produce viral progeny suggests a latent-like viral infection in the cells.
-
- Plant
-
-
-
Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants
More LessSalicylic acid (SA)-mediated resistance and RNA silencing are both important plant antiviral defence mechanisms. To investigate overlap between these resistance phenomena, we examined the ability of mutant Arabidopsis thaliana plants lacking DICER-like (DCL) endoribonucleases 2, 3 and 4 to exhibit SA-induced defence. We found that in dcl2/3/4 triple mutant plants, treatment with exogenous SA stimulated resistance to two positive-sense RNA viruses: cucumber mosaic virus and tobacco mosaic virus. We conclude that DCLs 2, 3 and 4, which are the predominant DCL endoribonucleases involved in silencing of positive-sense RNA viruses, are not required for effective SA-induced resistance to these viruses. However, the findings do not exclude RNA silencing from making a contribution to SA-mediated resistance in wild-type plants.
-
-
-
-
The 2b protein of cucumber mosaic virus is essential for viral infection of the shoot apical meristem and for efficient invasion of leaf primordia in infected tobacco plants
More LessIt has been reported previously that a 2b protein-defective mutant of the cucumber mosaic virus (CMV) Pepo strain (Δ2b) induces only mild symptoms in systemically infected tobacco plants. To clarify further the role of the 2b protein as an RNA silencing suppressor in mosaic symptom expression during CMV infection, this study monitored the sequential distribution of Δ2b in the shoot meristem and leaf primordia (LP) of inoculated tobacco. Time-course histochemical observations revealed that Δ2b was distributed in the shoot meristem at 7 days post-inoculation (p.i.), but could not invade shoot apical meristem (SAM) and quickly disappeared from the shoot meristem, whereas wild-type (Pepo) transiently appeared in SAM from 4 to 10 days p.i. In LP, Δ2b signals were detected only at 14 and 21 days p.i., whereas dense Pepo signals were observed in LP from 4 to 18 days p.i. Northern blot analysis showed that small interfering RNA (siRNA) derived from Δ2b RNA accumulated earlier in the shoot meristem and LP than that of Pepo. However, a similar amount of siRNA was detected in both Pepo- and Δ2b-infected plants at late time points. Tissue printing analysis of the inoculated leaves indicated that the areas infected by Pepo increased faster than those infected by Δ2b, whereas accumulation of Δ2b in protoplasts was similar to that of Pepo. These findings suggest that the 2b protein of the CMV Pepo strain determines virulence by facilitating the distribution of CMV in the shoot meristem and LP via prevention of RNA silencing and/or acceleration of cell-to-cell movement.
-
-
-
Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1
Three ‘triple gene block’ proteins known as TGBp1, TGBp2 and TGBp3 are required for cell-to-cell movement of plant viruses belonging to a number of genera including Hordeivirus. Hordeiviral TGBp1 interacts with viral genomic RNAs to form ribonucleoprotein (RNP) complexes competent for translocation between cells through plasmodesmata and over long distances via the phloem. Binding of hordeivirus TGBp1 to RNA involves two protein regions, the C-terminal NTPase/helicase domain and the N-terminal extension region. This study demonstrated that the extension region of hordeivirus TGBp1 consists of two structurally and functionally distinct domains called the N-terminal domain (NTD) and the internal domain (ID). In agreement with secondary structure predictions, analysis of circular dichroism spectra of the isolated NTD and ID demonstrated that the NTD represents a natively unfolded protein domain, whereas the ID has a pronounced secondary structure. Both the NTD and ID were able to bind ssRNA non-specifically. However, whilst the NTD interacted with ssRNA non-cooperatively, the ID bound ssRNA in a cooperative manner. Additionally, both domains bound dsRNA. The NTD and ID formed low-molecular-mass oligomers, whereas the ID also gave rise to high-molecular-mass complexes. The isolated ID was able to interact with both the NTD and the C-terminal NTPase/helicase domain in solution. These data demonstrate that the hordeivirus TGBp1 has three RNA-binding domains and that interaction between these structural units can provide a basis for remodelling of viral RNP complexes at different steps of cell-to-cell and long-distance transport of virus infection.
-
-
-
Sequence characteristics of potato virus Y recombinants
More LessPotato virus Y (PVY) is one of the most economically important plant pathogens. The PVY genome has a high degree of genetic variability and is also subject to recombination. New recombinants have been reported in many countries since the 1980s, but the origin of these recombinant strains and the physical and evolutionary mechanisms driving their emergence are not clear at the moment. The replicase-mediated template-switching model is considered the most likely mechanism for forming new RNA virus recombinants. Two factors, RNA secondary structure (especially stem–loop structures) and AU-rich regions, have been reported to affect recombination in this model. In this study, we investigated the influence of these two factors on PVY recombination from two perspectives: their distribution along the whole genome and differences between regions flanking the recombination junctions (RJs). Based on their distributions, only a few identified RJs in PVY genomes were located in lower negative FORS-D, i.e. having greater secondary-structure potential and higher AU-content regions, but most RJs had more negative FORS-D values upstream and/or higher AU content downstream. Our whole-genome analyses showed that RNA secondary structures and/or AU-rich regions at some sites may have affected PVY recombination, but in general they were not the main forces driving PVY recombination.
-
-
-
Hibiscus chlorotic ringspot virus upregulates plant sulfite oxidase transcripts and increases sulfate levels in kenaf (Hibiscus cannabinus L.)
More LessHibiscus chlorotic ringspot virus (HCRSV) coat protein (CP) is required for encapsidation and virus systemic movement. To better understand the roles of HCRSV CP in virus infection and its interactions with host proteins, a cDNA library of kenaf (Hibiscus cannabinus L.) was constructed and screened by using a yeast two-hybrid system (YTHS) to identify CP-interacting proteins. One protein identified was sulfite oxidase (SO) and the interaction was confirmed in vitro and in vivo. The interaction was found to be associated with peroxisomes by immunofluorescent labelling of peroxisomes by an anti-SKL signal peptide antibody. Our YTHS results showed that only the P and S domains of CP interacted with SO from kenaf. This is probably due to the exposure of these two domains on the outer surface of the capsid. Peroxisomes were observed to aggregate in HCRSV-infected cells, and biochemical assays of total protein from kenaf leaf extracts showed that SO activity and SO-dependent H2O2-generating activity in the HCRSV-infected leaves increased compared with that in mock-inoculated kenaf plants.
-
-
-
A full-length infectious clone of beet soil-borne virus indicates the dispensability of the RNA-2 for virus survival in planta and symptom expression on Chenopodium quinoa leaves
More LessFor a better understanding of the functionality and pathogenicity of beet soil-borne virus (BSBV), full-length cDNA clones have been constructed for the three genomic RNAs. With the aim of assessing their effectiveness and relative contribution to the virus housekeeping functions, transcripts were inoculated on Chenopodium quinoa and Beta macrocarpa leaves using five genome combinations. Both RNAs-1 (putative replicase) and -3 (putative movement proteins) proved to be essential for virus replication in planta and symptom production on C. quinoa, whereas RNA-2 (putative coat protein, CP, and a read-through domain, RT) was not. No symptoms were recorded on B. macrocarpa, but viral RNAs were detected. In both host plants, the 19 kDa CP was detected by Western blotting as well as a 115 kDa protein corresponding to the CP–RT.
-
-
-
Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast
More LessViroids of the family Avsunviroidae, such as eggplant latent viroid (ELVd), contain hammerhead ribozymes and replicate in the chloroplasts of the host plant through an RNA-based symmetrical rolling-circle mechanism in which oligomeric RNAs of both polarity are processed to monomeric linear RNAs (by cleavage) and to monomeric circular RNAs (by ligation). Using an experimental system consisting of transplastomic lines of the alga Chlamydomonas reinhardtii, a mutational analysis of sequence and structural elements in the ELVd molecule that are involved in transcript processing in vivo in a chloroplastic context was carried out. A collection of six insertion and three deletion ELVd mutants was created and expressed in C. reinhardtii chloroplast. All mutants cleaved efficiently except for the control with an insertion inside the hammerhead ribozyme domain, supporting the prediction that this domain is necessary and sufficient to mediate transcript cleavage in vivo. However, two deletion mutants that cleaved efficiently showed ligation defects, indicating that during RNA circularization, other parts of the molecule are involved in addition to the hammerhead ribozyme domain. This is probably a quasi double-stranded structure present in the central part of the molecule which contains the ligation site in an internal loop. However, the mutations prevented the viroid from infecting its natural host, eggplant, indicating that they affected other essential functions in ELVd infectious cycle. The insertion in the terminal loop of the right upper hairpin of ELVd did not have this effect; it was tolerated and partially maintained in the progeny.
-
-
-
Dating the origins of the maize-adapted strain of maize streak virus, MSV-A
Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800s, ∼20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize.
-
- Other Agents
-
-
-
Transmissions of variant Creutzfeldt–Jakob disease from brain and lymphoreticular tissue show uniform and conserved bovine spongiform encephalopathy-related phenotypic properties on primary and secondary passage in wild-type mice
More LessPrion strains are defined by their biological properties after transmission to wild-type mice, specifically by their incubation periods and patterns of vacuolar pathology (‘lesion profiles’). Preliminary results from transmissions of variant Creutzfeldt–Jakob disease (vCJD) to wild-type mice provided the first compelling evidence for the close similarity of the vCJD agent to the agent causing bovine spongiform encephalopathy (BSE). Complete results from this investigation, including the transmission characteristics of vCJD from brain and peripheral tissues of 10 cases (after primary transmission and subsequent mouse-to-mouse passage), have now been analysed. All 10 vCJD sources resulted in consistent incubation periods and lesion profiles, suggesting that all 10 patients were infected with the same strain of agent. Incubation periods suggested that infectious titres may be subject to regional variation within the brain. Comparison of incubation periods and lesion profiles from transmission of brain and peripheral tissues showed no evidence of tissue-specific modification in the biological properties of the agent. Analysis of the protease-resistant prion protein (PrPres) by Western blotting from primary and subsequent passages in mice showed a glycosylation pattern closely resembling that of vCJD in humans, the so-called BSE ‘glycoform signature’. Minor variations in PrPres fragment size were evident between mouse strains carrying different alleles of the gene encoding PrP both in primary transmissions and on further passages of vCJD brain. Overall, the results closely resembled those of previously reported transmissions of BSE in the same mouse strains, consistent with BSE being the origin of all of these vCJD cases.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)