- Volume 89, Issue 12, 2008
Volume 89, Issue 12, 2008
- Animal
-
- DNA viruses
-
-
Inhibition of duck hepatitis B virus infection of liver cells by combined treatment with viral e antigen and carbohydrates
More LessThe e antigen (eAg) of duck hepatitis B virus (DHBV) is a glycosylated secretory protein with a currently unknown function. We concentrated this antigen from the supernatants of persistently infected primary duck liver cell cultures by ammonium sulphate precipitation, adsorption chromatography over concanavalin A Sepharose, preparative isoelectric focusing and molecular sieve chromatography. The combined treatment of duck liver cells with DHBV eAg (DHBe) concentrate and α-methyl-d-mannopyranoside strongly inhibited DHBV replication at de novo infection. When DHBe was added to non-infected primary duck liver cells, it was found to be associated with liver sinusoidal endothelial cells. This binding could be inhibited by the addition of α-methyl-d-mannopyranoside and other sugar molecules. The inhibitory effect of DHBe on infection could play a role in maintaining viral persistence.
-
-
-
Detection of bovine papillomavirus type 2 in the peripheral blood of cattle with urinary bladder tumours: possible biological role
Bovine papillomavirus type 2 (BPV-2) infection has been associated with urinary bladder tumours in adult cattle grazing on bracken fern-infested land. In this study, we investigated the simultaneous presence of BPV-2 in whole blood and urinary bladder tumours of adult cattle in an attempt to better understand the biological role of circulating BPV-2. Peripheral blood samples were collected from 78 cattle clinically suffering from a severe chronic enzootic haematuria. Circulating BPV-2 DNA was detected in 61 of them and in two blood samples from healthy cows. Fifty of the affected animals were slaughtered at public slaughterhouses and neoplastic proliferations in the urinary bladder were detected in all of them. BPV-2 DNA was amplified and sequenced in 78 % of urinary bladder tumour samples and in 38.9 % of normal samples as a control. Circulating episomal BPV-2 DNA was detected in 78.2 % of the blood samples. Simultaneous presence of BPV-2 DNA in neoplastic bladder and blood samples was detected in 37 animals. Specific viral E5 mRNA and E5 oncoprotein were also detected in blood by RT-PCR and Western blot/immunocytochemistry, respectively. It is likely that BPV-2 can persist and be maintained in an active status in the bloodstream, in particular in the lymphocytes, as a reservoir of viral infection that, in the presence of co-carcinogens, may cause the development of urinary bladder tumours.
-
-
-
HepG2 hepatocellular carcinoma cells are a non-permissive system for B19 virus infection
Parvovirus B19 has been associated with liver dysfunction and has been considered a potential aetiological agent of fulminant hepatitis and hepatitis-associated aplastic anaemia. The possible effects of B19 virus infection on the liver have been investigated using HepG2 hepatocellular carcinoma cells as a model system, but the reported results are inconsistent. To investigate this relationship further, this study followed the course of B19 virus infection of HepG2 cells in terms of viral DNA, RNA and protein production by quantitative PCR, RT-PCR and immunofluorescence assays. The data showed that B19 virus is able to bind and possibly enter HepG2 cells, but that viral genome replication or transcription is not supported and that viral proteins are not produced. As far as HepG2 cells can be considered a representative model system, any possible pathogenic role of B19 virus on the liver cannot be ascribed to infection or to a direct cytopathic effect on hepatocytes.
-
-
-
Bombyx mori nucleopolyhedrovirus SNF2 global transactivator homologue (Bm33) enhances viral pathogenicity in B. mori larvae
More LessThe SNF2 global transactivator gene homologue (Bm33) of Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the genes exclusive to group I NPVs, but its function remains unknown. This study describes the characterization of Bm33. Transcriptional analysis suggested that Bm33 is an early gene, as its transcript was observed at 4 h post-infection in BmNPV-infected BmN cells. To examine the role of Bm33 during BmNPV infection, a Bm33 deletion mutant (BmORF33D) was constructed and its infectivity was characterized in BmN cells and B. mori larvae. BmORF33D did not have any obvious defects in the production of budded viruses (BVs) or occlusion bodies (OBs) in BmN cells compared with wild-type BmNPV. Larval bioassays revealed that deletion of Bm33 did not reduce virus infectivity. However, BmORF33D took approximately 10–15 h longer than wild-type BmNPV to kill B. mori larvae when tested by either BV injection or OB ingestion. These results suggest that Bm33 is not essential for virus growth in vitro or in vivo, but that it accelerates the time of death of B. mori larvae.
-
- Plant
-
-
-
Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication
More LessPseudorecombination studies in Nicotiana benthamiana demonstrate that Ageratum yellow vein virus (AYVV) and Eupatorium yellow vein virus (EpYVV) can functionally interact with DNA-β satellites associated with AYVV, EpYVV, cotton leaf curl Multan virus (CLCuMV) and honeysuckle yellow vein virus (HYVV). In contrast, CLCuMV shows some specificity in its ability to interact with distinct satellites and HYVV is able to interact only with its own satellite. Using an N. benthamiana leaf disk assay, we have demonstrated that HYVV is unable to trans-replicate other satellites. To investigate the basis of trans-replication compatibility, deletion mutagenesis of AYVV DNA-β has been used to localize the origin of replication to approximately 360 nt, encompassing the ubiquitous nonanucleotide/stem–loop structure, satellite conserved region (SCR) and part of the intergenic region immediately upstream of the SCR. Additional deletions within this intergenic region have identified a region that is essential for replication. The capacity for DNA-β satellites to functionally interact with distinct geminivirus species and its implications for disease diversification are discussed.
-
-
- Other Agents
-
-
-
Histidine at codon 154 of the prion protein gene is a risk factor for Nor98 scrapie in goats
Prion protein gene (PRNP) polymorphisms are involved in modulating the appearance of atypical/Nor98 scrapie in sheep, with the alleles AHQ and AF141RQ strongly associated with occurrence of the disease. The presence of histidine at codon 154 has also been detected in Nor98-affected goats, but statistical analysis of the association between Nor98 and goat PRNP polymorphisms has not been reported previously. Here, a case–control study was carried out on eight Nor98-positive goats and 246 negative herdmates belonging to eight Italian Nor98 scrapie outbreaks. The results revealed that histidine at codon 154 is also strongly associated with the disease in goats.
-
-
-
-
In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie
More LessScrapie is a fatal, naturally transmissible, neurodegenerative prion disease that affects sheep and goats and is characterized by the accumulation of a misfolded protein, PrPSc, converted from host-encoded PrPc, in the central nervous system of affected animals. Highly efficient in vitro conversion of host PrPc to PrPSc has been achieved in models of scrapie and in natural prion diseases by protein misfolding cyclic amplification (PMCA). Here, we demonstrate amplification, by serial PMCA, of PrPSc from individual sources of scrapie-infected sheep. Efficiency of amplification was affected by the pairing of the source of PrPSc with the control brain substrate of different genotypes of PrP. In line with previous studies, efficiency of amplification was greatly enhanced with the addition of a synthetic polyanion, polyadenylic acid (PolyA), facilitating rapid detection of low levels of PrPSc from body fluids such as blood. To this end PrPSc was amplified, in a 3 day PMCA assay, from blood leukocyte preparations from VRQ/VRQ scrapie-affected sheep at clinical end point. While PolyA-assisted PMCA resulted in spontaneous conversion of PrPc, we were able to distinguish blood samples from unaffected and affected sheep under controlled conditions. This study demonstrates that highly efficient amplification of PrPSc can be achieved for ovine scrapie from both brain and blood from naturally infected sheep and shows potential applications for improvements in current diagnostics and pre-mortem testing.
-
- Jgv Direct
-
-
-
The human H5N1 influenza A virus polymerase complex is active in vitro over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit
Influenza A virus (IAV) replicates in the upper respiratory tract of humans at 33 °C and in the intestinal tract of birds at close to 41 °C. The viral RNA polymerase complex comprises three subunits (PA, PB1 and PB2) and plays an important role in host adaptation. We therefore developed an in vitro system to examine the temperature sensitivity of IAV RNA polymerase complexes from different origins. Complexes were prepared from human lung epithelial cells (A549) using a novel adenoviral expression system. Affinity-purified complexes were generated that contained either all three subunits (PA/PB1/PB2) from the A/Viet/1203/04 H5N1 virus (H/H/H) or the A/WSN/33 H1N1 strain (W/W/W). We also prepared chimeric complexes in which the PB2 subunit was exchanged (H/H/W, W/W/H) or substituted with an avian PB2 from the A/chicken/Nanchang/3-120/01 H3N2 strain (W/W/N). All complexes were functional in transcription, cap-binding and endonucleolytic activity. Complexes containing the H5N1 or Nanchang PB2 protein retained transcriptional activity over a broad temperature range (30–42 °C). In contrast, complexes containing the WSN PB2 protein lost activity at elevated temperatures (39 °C or higher). The E627K mutation in the avian PB2 was not required for this effect. Finally, the avian PB2 subunit was shown to confer enhanced stability to the WSN 3P complex. These results show that PB2 plays an important role in regulating the temperature optimum for IAV RNA polymerase activity, possibly due to effects on the functional stability of the 3P complex.
-
-
-
-
Evolutionary dynamics of human and avian metapneumoviruses
More LessHuman (HMPV) and avian (AMPV) metapneumoviruses are closely related viruses that cause respiratory tract illnesses in humans and birds, respectively. Although HMPV was first discovered in 2001, retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV was first isolated in the 1970s, and can be classified into four subgroups, A–D. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has emerged from AMPV-C upon zoonosis. Presently, at least four genetic lineages of HMPV circulate in human populations – A1, A2, B1 and B2 – of which lineages A and B are antigenically distinct. We used a Bayesian Markov Chain Monte Carlo (MCMC) framework to determine the evolutionary and epidemiological dynamics of HMPV and AMPV-C. The rates of nucleotide substitution, relative genetic diversity and time to the most recent common ancestor (TMRCA) were estimated using large sets of sequences of the nucleoprotein, the fusion protein and attachment protein genes. The sampled genetic diversity of HMPV was found to have arisen within the past 119–133 years, with consistent results across all three genes, while the TMRCA for HMPV and AMPV-C was estimated to have existed around 200 years ago. The relative genetic diversity observed in the four HMPV lineages was low, most likely reflecting continual population bottlenecks, with only limited evidence for positive selection.
-
-
-
Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus
More LessThe porcine reproductive and respiratory syndrome virus (PRRSV) shows a restricted tropism for subsets of porcine macrophages in vivo. To date, two PRRSV receptors have been identified on primary macrophages, heparan sulphate for binding and sialoadhesin for binding and internalization. However, additional factors are needed because the expression of both receptors in non-permissive cells results in virus internalization but not in virus uncoating and productive infection. Recently, CD163 was described as a PRRSV receptor on Marc-145 cells that renders non-permissive cells susceptible to PRRSV. Therefore, the potential role of CD163 in PRRSV entry in macrophages and its potential interplay with sialoadhesin were studied. Incubation of macrophages at 37 °C with either sialoadhesin- or CD163-specific antibodies reduced PRRSV infection by up to 75 %, while infection was completely blocked by a combination of both antibodies. When incubated at 4 °C, only sialoadhesin- and not CD163-specific antibodies reduced PRRSV infection. In addition, confocal analysis of PRRSV entry in non-permissive cells expressing only sialoadhesin showed PRRSV internalization but no uncoating. In contrast, when both sialoadhesin and CD163 were expressed, PRRSV was uncoated upon internalization, resulting in productive infection. Virus internalization was not observed when only CD163 was expressed; although, cells became productively infected. Thus, sialoadhesin is confirmed as a PRRSV internalization receptor and CD163 is shown to be involved in PRRSV entry, probably during uncoating. Co-expression of recombinant sialoadhesin and CD163 in non-permissive cells increased virus production 10–100 times compared with cells expressing only CD163, sustaining the requirement of both for efficient PRRSV infection.
-
-
-
CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization
Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.
-
-
-
A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones
More LessHerpes simplex virus type 1 (HSV-1) has the capacity to establish a life-long latent infection in sensory neurones and also to periodically reactivate from these cells. Since mutant viruses defective for immediate-early (IE) expression retain the capacity for latency establishment it is widely assumed that latency is the consequence of a block in IE gene expression. However, it is not clear whether viral gene expression can precede latency establishment following wild-type virus infection. In order to address this question we have utilized a reporter mouse model system to facilitate a historical analysis of viral promoter activation in vivo. This system utilizes recombinant viruses expressing Cre recombinase under the control of different viral promoters and the Cre reporter mouse strain ROSA26R. In this model, viral promoter-driven Cre recombinase mediates a permanent genetic change, resulting in reporter gene activation and permanent marking of latently infected cells. The analyses of HSV-1 recombinants containing human cytomegalovirus major immediate-early, ICP0, gC or latency-associated transcript promoters linked to Cre recombinase in this system have revealed the existence of a population of neurones that have experienced IE promoter activation prior to the establishment of latency.
-
-
-
The bank vole (Myodes glareolus) as a sensitive bioassay for sheep scrapie
Despite intensive studies on sheep scrapie, a number of questions remain unanswered, such as the natural mode of transmission and the amount of infectivity which accumulates in edible tissues at different stages of scrapie infection. Studies using the mouse model proved to be useful for recognizing scrapie strain diversity, but the low sensitivity of mice to some natural scrapie isolates hampered further investigations. To investigate the sensitivity of bank voles (Myodes glareolus) to scrapie, we performed end-point titrations from two unrelated scrapie sources. Similar titres [105.5 ID50 U g−1 and 105.8 ID50 U g−1, both intracerebrally (i.c.)] were obtained, showing that voles can detect infectivity up to 3–4 orders of magnitude lower when compared with laboratory mice. We further investigated the relationships between PrPSc molecular characteristics, strain and prion titre in the brain and tonsil of the same scrapie-affected sheep. We found that protease-resistant PrPSc fragments (PrPres) from brain and tonsil had different molecular features, but induced identical disease phenotypes in voles. The infectivity titre of the tonsil estimated by incubation time assay was 104.8 i.c. ID50 U g−1, i.e. fivefold less than the brain. This compared well with the relative PrPres content, which was 8.8-fold less in tonsil than in brain. Our results suggest that brain and tonsil harboured the same prion strain showing different glycoprofiles in relation to the different cellular/tissue types in which it replicated, and that a PrPSc-based estimate of scrapie infectivity in sheep tissues could be achieved by combining sensitive PrPres detection methods and bioassay in voles.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 73 (1992 - 2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)