- Volume 87, Issue 1, 2006
Volume 87, Issue 1, 2006
- Animal
-
- DNA viruses
-
-
CCAAT/enhancer-binding protein β represses human papillomavirus 11 upstream regulatory region expression through a promoter-proximal YY1-binding site
More LessCCAAT/enhancer-binding protein β (C/EBPβ) can function as a repressor or as an activator of human papillomavirus (HPV) gene expression, depending on which cell type the experiments are conducted. In this report, it was shown that within primary human foreskin keratinocyte cells (HFK) the activity of C/EBPβ can be switched from that of a repressor of HPV11 expression to an activator by mutating a single promoter-proximal consensus YY1-binding site within the HPV11 upstream regulatory region (URR). It was shown that in HFK cells, exogenous expression of C/EBPβ significantly activates the expression of mutant HPV11 URR reporter plasmids that contain deletions which overlap a 127 bp region (−269 to −142). Inclusive in this region are binding sites for multiple transcription factors, including AP1, YY1 and C/EBPα. Only mutation of the YY1 site resulted in the switch in phenotype, indicating that C/EBPβ represses HPV11 expression in these cells via YY1 binding. The level of YY1 activity was also measured in HFK cells transfected with a C/EBPβ expression plasmid and a significant increase in YY1 activity as compared with mock-transfected cells was found. C33A cells, which exhibit activation of wild-type HPV11 gene expression with exogenous C/EBPβ co-expression, failed to demonstrate C/EBPβ-induced YY1 activation. It was concluded that in HFK cells, exogenous C/EBPβ induces the activity of YY1, which, in turn, can repress HPV11 URR expression through the promoter-proximal YY1-binding site.
-
- Plant Viruses
-
-
-
Importance of the C-terminal domain of soybean mosaic virus coat protein for subunit interactions
More LessThe potyvirus coat protein (CP) is involved in aphid transmission, cell-to-cell movement and virus assembly, not only by binding to viral RNA, but also by self-interaction or interactions with other factors. In this study, a number of CP mutants of Soybean mosaic virus (SMV) containing deletions and site-directed mutations were generated and cloned into yeast two-hybrid vectors. Interaction was confirmed by the expression of reporter genes, including HIS3, ADE2 and MEL1, in yeast strain AH109. Deletion of the C-terminal region of the CP caused loss of the CP–CP self-interaction ability detected in CP mutants with the C-terminal region. Alanine substitution at the amino acid positions R190, E191, E212, R245, H246 and R249 disrupted CP–CP interaction, whereas substitutions at the amino acid positions R188, D189, D198, K205, K218 and D250 did not. These results indicate that the C-terminal region of SMV CP may contain a domain(s) or amino acids required for CP–CP interaction and virus assembly.
-
-
-
-
Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant
More LessPrevious characterization of Peach latent mosaic viroid (PLMVd) variants from a single peach calico (PC) isolate showed that PC symptoms are induced by variants with a 12–13 nt insertion at a specific position and folding into a hairpin with a U-rich loop. Here, this study was extended to two other PC isolates. PLMVd variants with insertions similar to those reported previously (type 1), predominated in one isolate (PC-P2). The second (PC-P1), in addition to these variants, contained others with insertions in the same position and of the same size, but with the hairpin capped by a GA-rich loop (type 2). When symptomatic and non-symptomatic tissues from both isolates were used to inoculate GF-305 peach seedlings, they reproduced the phenotype of the inoculum source, indicating that variants differing in pathogenicity are unevenly distributed within single plants. Moreover, characterization of the progeny from inoculations with the PC-P1 source showed that variants with insertions of type 1 and 2 were predominant in the symptomatic and non-symptomatic seedlings, respectively, confirming the association between PC and variants with type 1 but not type 2 insertions. Inoculations with dimeric in vitro transcripts from PLMVd variants with type 1, type 2 and with a chimeric insertion showed that the variant with type 2 insertion was latent and established that the U-rich capping loop has a major role in PC, although the adjacent stem may also have some influence. Insertions can be acquired and lost during infection, suggesting that latent variants can evolve into pathogenic variants and vice versa.
-
- Fungal
-
-
-
Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum
More LessIt was previously reported that three dsRNA segments, designated L, M and S, were isolated from Sclerotinia sclerotiorum strain Ep-1PN and that the M dsRNA segment was coincident with hypovirulence and debilitation of the fungal host. Here, the complete nucleotide sequence of the M dsRNA of 5419 nt, excluding the poly(A) tail, was determined. Sequence analysis revealed the occurrence of a single open reading frame (nt 93–5195) encoding a protein with significant similarity to the replicases of the ‘alphavirus-like’ supergroup of positive-strand RNA viruses. The M dsRNA-encoded putative replicase protein contained the conserved methyl transferase, helicase and RNA-dependent RNA polymerase (RdRp) domains characteristic of the replicases of potex-like plant viruses (flexiviruses) and Botrytis virus F (BVF), a flexuous rod mycovirus infecting the phytopathogenic fungus Botrytis cinerea. Furthermore, convincing evidence is presented showing that ascospore descendents derived from the debilitated strain Ep-1PN were devoid of dsRNA and exhibited normal colony morphology. Moreover, it was demonstrated that the debilitation phenotype was transmitted from the parental debilitated strain to its normal ascospore progeny via hyphal anastomosis. These results suggest that the M dsRNA from strain Ep-1PN is derived from the genomic RNA of a positive-strand RNA virus, which we designated Sclerotinia sclerotiorum debilitation-associated RNA virus (SsDRV). Although phylogenetic analysis of the conserved RdRp motifs verified that SsDRV is closely related to BVF and to the allexiviruses in the family Flexiviridae, SsDRV is distinct from these viruses, mainly based on the lack of coat protein and movement protein.
-
-
- Other Agents
-
-
-
Pathological prion protein in muscles of hamsters and mice infected with rodent-adapted BSE or vCJD
More LessRecently, pathological prion protein (PrPTSE) was detected in muscle from sheep infected with scrapie, the archetype of transmissible spongiform encephalopathies (TSEs). This finding has highlighted the question of whether mammalian muscle may potentially also provide a reservoir for TSE agents related to bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob Disease (vCJD). Here, results are reported from studies in hamsters and mice that provide direct experimental evidence, for the first time, of BSE- and vCJD-associated PrPTSE deposition in muscles. Our findings emphasize the need for further assessment of possible public-health risks from TSE involvement of skeletal muscle.
-
-
- Jgv Direct
-
-
-
Dendritic cells pulsed with hepatitis C virus NS3 protein induce immune responses and protection from infection with recombinant vaccinia virus expressing NS3
More LessInfections with Hepatitis C virus (HCV) pose a serious health problem worldwide. In this study, the hypothesis that adoptive transfer of dendritic cells (DCs) pulsed with HCV NS3 protein and matured with an oligodeoxynucleotide (ODN) containing CpG motifs (CpG) ex vivo would initiate potent HCV-specific protective immune responses in vivo was tested. NS3 protein was efficiently transduced into DCs and treatment of DCs with CpG ODN induced phenotypic maturation and specifically increased the expression of CD40. DCs matured with CpG ODN produced higher interleukin 12 levels and a stronger allogeneic T-cell response compared with untreated DCs. Notably, there were no differences between NS3-pulsed DCs and DCs pulsed with a control protein with respect to phenotype, cytokine production or mixed lymphocyte reaction, indicating that transduction with NS3 protein did not impair DC functions. Compared with the untreated NS3-pulsed DCs, the NS3-pulsed DCs matured with CpG ODN induced stronger cellular immune responses including enhanced cytotoxicity, higher interferon-γ production and stronger lymphocyte proliferation. Upon challenge with a recombinant vaccinia virus expressing NS3, all mice immunized with NS3-pulsed DCs showed a significant reduction in vaccinia virus titres when compared with mock-immunized mice. However, the NS3-pulsed DCs matured with CpG ODN induced higher levels of protection compared with the untreated NS3-pulsed DCs. These data are the first to show that NS3-pulsed DCs induce specific immune responses and provide protection from viral challenge, and also demonstrate that CpG ODNs, which have a proven safety profile, would be useful in the development of DC vaccines.
-
-
-
-
Isolation and characterization of a chimpanzee alphaherpesvirus
More LessAlthough both beta- and gammaherpesviruses indigenous to great-ape species have been isolated, to date all alphaherpesviruses isolated from apes have proven to be human viruses [herpes simplex virus types 1 (HSV1) and 2 (HSV2) or varicella-zoster virus]. If the alphaherpesviruses have co-evolved with their host species, some if not all ape species should harbour their own alphaherpesviruses. Here, the isolation and characterization of an alphaherpesvirus from a chimpanzee (ChHV) are described. Sequencing of a number of genes throughout the ChHV genome indicates that it is collinear with that of HSV. Phylogenetic analyses place ChHV in a clade with HSV1 and HSV2, the alphaherpesviruses of Old World monkeys comprising a separate clade. Analysis of reactivity patterns of HSV2-immune human sera and ChHV-immune chimpanzee sera by competition ELISA support this relationship. Phylogenetic analyses also place ChHV rather than HSV1 as the closest relative of HSV2.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)