-
Volume 84,
Issue 10,
2003
Volume 84, Issue 10, 2003
- Animal
-
- DNA viruses
-
-
Identification of equine herpesvirus-1 antigens recognized by cytotoxic T lymphocytes
Equine herpesvirus-1 (EHV-1) causes serious disease in horses throughout the world, despite the frequent use of vaccines. CTLs are thought to be critical for protection from primary and reactivating latent EHV-1 infections. However, the antigen-specificity of EHV-1-specific CTLs is unknown. The aim of this study was to identify EHV-1 genes that encode proteins containing CTL epitopes and to determine their MHC I (or ELA-A in the horse) restriction. Equine dendritic cells, transfected with a series of EHV-1 genes, were used to stimulate autologous CTL precursor populations derived from previously infected horses. Cytotoxicity was subsequently measured against EHV-1-infected PWM lymphoblast targets. Dendritic cells were infected with EHV-1 (positive control) or transfected with plasmids encoding the gB, gC, gD, gE, gH, gI, gL, immediate-early (IE) or early protein of EHV-1 using the PowderJect XR-1 research device. Dendritic cells transfected with the IE gene induced CTL responses in four of six ponies. All four of these ponies shared a common ELA-A3.1 haplotype. Dendritic cells transfected with gC, gD, gI and gL glycoproteins induced CTLs in individual ponies. The cytotoxic activity was ELA-A-restricted, as heterologous targets from ELA-A mismatched ponies were not killed and an MHC I blocking antibody reduced EHV-1-specific killing. This is the first identification of an EHV-1 protein containing ELA-A-restricted CTL epitopes. This assay can now be used to study CTL specificity for EHV-1 proteins in horses with a broad range of ELA-A haplotypes, with the goal of developing a multi-epitope EHV-1 vaccine.
-
-
-
Infection of macrophages by a lymphotropic herpesvirus: a new tropism for Marek's disease virus
More LessMarek's disease virus (MDV) is classified as an oncogenic lymphotropic herpesvirus of chickens. MDV productively and cytolytically infects B, αβT and γδT lymphocytes and latently infects T-helper lymphocytes. The aims of this study were to identify whether MDV infects macrophages in vivo and, if so, whether quantitative differences in macrophage infection are associated with MDV strain virulence. Chickens were infected with either virulent MDV (HPRS-16) or ‘hypervirulent’ MDV (C12/130). Flow cytometry with monoclonal antibodies recognizing MDV pp38 antigen and leukocyte antigens was used to identify MDV lytically infected cells. Macrophages from HPRS-16- and C12/130-infected chickens were pp38+. It is demonstrated that macrophages are pp38+ because they are infected and not because they have phagocytosed MDV antigens, as assessed by confocal microscopy using antibodies recognizing MDV antigens of the three herpesvirus kinetic classes: infected cell protein 4 (ICP4, immediate early), pp38 (early) and glycoprotein B (gB, late). Spleen macrophages from MDV-infected chickens were ICP4+, pp38+ and gB+, and ICP4 had nuclear localization denoting infection. Finally, MDV pp38+ macrophages had high inherent death rates, confirming cytolytic MDV infection, although production of virus particles has not been detected yet. These results have two fundamental implications for understanding MDV pathogenesis: (i) MDV evolved to perturb innate, in addition to acquired, immunity and (ii) macrophages are excellent candidates for transporting MDV to primary lymphoid organs during the earliest stages of pathogenesis.
-
-
-
In vivo transcription of the Epstein–Barr virus (EBV) BamHI-A region without associated in vivo BARF0 protein expression in multiple EBV-associated disorders
The in vivo expression of the Epstein–Barr virus (EBV) BamHI-A rightward transcripts (BARTs) as well as the putative BART-encoded BARF0 and RK-BARF0 proteins in various EBV-associated malignancies was investigated. RT-PCRs specific for the different splice variants of the BARTs and both a nucleic acid sequence-based amplification assay and an RT-PCR specific for the BARF0 ORF were used. Abundant transcription of BARTs was found in EBV-associated Hodgkin's lymphomas, Burkitt's lymphomas (BL), T-cell non-Hodgkin's lymphomas, post-transplant lymphoproliferative disorders, AIDS-related lymphomas and gastric carcinomas. Using RNA in situ hybridization (RISH), BARTs were detected within the neoplastic cells of these malignancies. BARTs encoding RK-BARF0 were not detected. The BARTs detected were shown possibly to encode the RPMS1 and BARF0 proteins, based on their splicing. However, BARTs actually harbouring the BARF0 ORF were detected only in specimens containing a relatively large number of EBV-positive cells. New monoclonal antibodies against the BARF0 protein were generated that efficiently recognized prokaryotic and eukaryotic recombinant BARF0. However, the BARF0 protein was not detected in clinical samples, nor in EBV-positive cell lines, even though these were positive for BARTs by RISH and/or BARF0 RNA in vitro analysis. Using immunoblot analysis, no antibodies against baculovirus-expressed BARF0 protein were detected in the sera of nasopharyngeal carcinoma patients, BL patients and Hodgkin's disease patients, patients with chronic EBV infection, infectious mononucleosis patients or EBV-positive healthy donors. Thus, BARTs containing the BARF0 ORF are expressed in vivo but the BARF0 protein cannot be detected and may be expressed only marginally. It is concluded that the BARF0 protein is unlikely to play a role in vivo in EBV-positive malignancies.
-
-
-
Molecular comparison of isolates of an emerging fish pathogen, koi herpesvirus, and the effect of water temperature on mortality of experimentally infected koi
Koi herpesvirus (KHV) has been associated with devastating losses of common carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) in North America, Europe, Israel and Asia. A comparison of virion polypeptides and genomic restriction fragments of seven geographically diverse isolates of KHV indicated that with one exception they represented a homogeneous group. A principal environmental factor influencing the onset and severity of disease is water temperature. Optimal growth of KHV in a koi fin cell line occurred at temperatures from 15–25 °C. There was no growth or minimal growth at 4, 10, 30 or 37 °C. Experimental infections of koi with KHV at a water temperature of 23 °C resulted in a cumulative mortality of 95·2 %. Disease progressed rapidly but with lower mortality (89·4–95·2 %) at 28 °C. Mortality (85·0 %) also occurred at 18 °C but not at 13 °C. Shifting virus-exposed fish from 13–23 °C resulted in the rapid onset of mortality.
-
-
-
Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells
More LessRepeated baculovirus infections in cultured insect cells lead to the generation of defective interfering viruses (DIs), which accumulate at the expense of the intact helper virus and compromise heterologous protein expression. In particular, Autographa californica multicapsid nucleopolyhedovirus (AcMNPV) DIs are enriched in an origin of viral DNA replication (ori) not associated with the homologous regions (hrs). This non-hr ori is located within the coding sequence of the non-essential p94 gene. We investigated the effect of a deletion of the AcMNPV non-hr ori on the heterologous protein expression levels following serial passage in Sf21 insect cells. Using homologous ET recombination in E. coli, deletions within the p94 gene were made in a bacterial artificial chromosome (BAC) containing the entire AcMNPV genome (bacmid). All bacmids were equipped with an expression cassette containing the green fluorescent protein gene and a gene encoding the classical swine fever virus E2 glycoprotein (CSFV-E2). For the parental (intact) bacmid only, a strong accumulation of DIs with reiterated non-hr oris was observed. This was not observed for the mutants, indicating that removal of the non-hr ori enhanced the genetic stability of the viral genome upon passaging. However, for all passaged viruses it was found that the entire BAC vector including the expression cassette was spontaneously deleted from the viral genome, leading to a rapid decrease in GFP and CSFV-E2 production. The rationale for the (intrinsic) genetic instability of the BAC vector in insect cells and the implications with respect to large-scale production of proteins with bacmid-derived baculoviruses are discussed.
-
- Plant
-
-
-
The ability of a bymovirus to overcome the rym4-mediated resistance in barley correlates with a codon change in the VPg coding region on RNA1
More LessThe genome difference(s) that enable the European pathotype 2 isolates of Barley yellow mosaic virus (BaYMV-2) to infect barley genotypes with the rym4 resistance gene were investigated. Stable deletions of different sizes occurred in RNA2 of laboratory isolates of the common pathotype (BaYMV-1) and BaYMV-2. After mechanical inoculation of susceptible or rym4 genotypes with a mixture of both isolates, immunocapture-RT-PCR with RNA2-specific primers flanking stable deletion regions was used to detect and distinguish the two pathotypes. Individual leaves contained RNA2 of either or both isolates, showing that RNA2 of BaYMV-1 can replicate and move systemically in rym4 plants when co-inoculated with BaYMV-2. In contrast, sequences of RNA1-specific RT-PCR fragments showed that in resistant plants these were always BaYMV-2, suggesting that the pathogenicity determinant was on RNA1. The complete ORFs of RNA1 of three BaYMV-1 and four BaYMV-2 isolates from the UK and Germany were sequenced, and the RNA2 sequences of one BaYMV-1 and two BaYMV-2 isolates from the UK were also determined. All sequences were very similar to one another and to the published German BaYMV-1 isolate. The only consistent amino acid difference between the BaYMV-1 and BaYMV-2 isolates was in the RNA1-encoded polyproteins and this was confirmed by sequencing the relevant region of eight further German isolates. All BaYMV-1 isolates had lysine at aa 1307, whereas BaYMV-2 isolates had asparagine (or, in one isolate, histidine). The polymorphism occurred in the central region of VPg, which has been shown to be required for pathogenicity on genotypes carrying recessive resistance genes in several potyvirus/dicotyledonous plant pathosystems.
-
-
-
-
The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg–HCPro and VPg–VPg interactions
More LessInteractions between the major proteins of Clover yellow vein virus (ClYVV) were investigated using a GAL4 transcription activator-based yeast two-hybrid system (YTHS). Self-interactions manifested by VPg and HCPro and an interaction between NIb and NIaPro were observed in ClYVV. In addition, a strong HCPro–VPg interaction was detected by both YTHS and by in vitro far-Western blot analysis in ClYVV. A potyvirus HCPro–VPg interaction has not been reported previously. Using YTHS, domains in ClYVV for the VPg self-interaction and the HCPro–VPg interaction were mapped. The VPg C-terminal region (38 amino acids) was important for the VPg–VPg interaction and the central 19 amino acids were needed for the HCPro–VPg interaction.
-
-
-
Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants
More LessThe distribution of potyviruses in mixed infected Nicotiana benthamiana plants was investigated by using green and red fluorescent proteins (GFP, DsRed). Full-length cDNA clones of Plum pox virus (PPV-NAT-AgfpS; PPV-NAT-red), Tobacco vein mottling virus (TVMV-gfp; TVMV-red) and Clover yellow vein virus (ClYVV-GFP) expressing fluorescent proteins, referred to here as labelled viruses, were used to characterize the distribution of different potyviral populations (e.g. TVMV-gfp/PPV-NAT-red), as well as populations of identical, but differently labelled potyviruses (e.g. PPV-NAT-AgfpS/PPV-NAT-red) or in mixed infections of potyviruses with labelled Potato virus X (PVX). Plants infected by any of the PVX/potyvirus combinations exhibited synergistic symptoms and large numbers of cells were doubly infected. In contrast, co-infections of differently labelled potyvirus populations appeared non-synergistic and remained predominantly separate in the infected plants, independent of whether different viruses or identical but differently labelled viruses were co-infecting. Contact of differently labelled virus populations that exhibited spatial separation was restricted to a small number of cells at the border of different fluorescent cell clusters.
-
-
-
Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing
More LessThe process known as ‘recovery’ by which virus-infected plants become resistant to the infection is an interesting phenomenon where both RNA silencing and virus resistance fully converge. In a previous study, we showed that transgenic Nicotiana benthamiana NIbV3 plants, transformed with a mutated NIb coding sequence from Plum pox virus (PPV), showed a delayed, very specific, resistance phenotype, which was induced by the initial infection. This recovery was the consequence of the activation of an RNA silencing mechanism in the PPV-infected plant, which took place even though PPV encodes a silencing suppressor (HCPro). Making use of plants regenerated from the recovered tissue, which maintained the transgene silencing/virus resistance phenotype, we have demonstrated that both Cucumber mosaic virus (CMV) and Tobacco vein mottling virus (TVMV), expressing the silencing suppressor 2b and HCPro, respectively, were able to reactivate transgene expression. Surprisingly, only the silencing suppression caused by CMV, but not that originating from TVMV, was able to revert the recovered NIbV3 plants to a PPV-susceptible phenotype.
-
- Other Agents
-
-
-
Association of an 11–12 kDa protease-resistant prion protein fragment with subtypes of dura graft-associated Creutzfeldt–Jakob disease and other prion diseases
Creutzfeldt–Jakob disease can develop in subjects given a cadaveric dura mater graft (dCJD). This disease has a phenotypic heterogeneity despite the lack of genetic variation. Numerous plaque-type prion protein (PrP) deposits are found in the brain of some but not all subjects; hence, there may be two subtypes of this clinical entity. To validate dCJD subtypes further, we carried out a larger-scale clinicopathological analysis and typing of protease-resistant PrP (PrPSc) in dCJD cases. Cases with plaque-type PrP deposits (p-dCJD) were shown to be distinct from those without PrP plaques (np-dCJD), from several clinicopathological aspects. Analysis of PrPSc revealed that, while the major PrPSc species from both subtypes was of 21 kDa after deglycosylation (type 1 PrPSc), a C-terminal PrP fragment of 11–12 kDa (fPrP11–12) was associated with np-dCJD but not with p-dCJD. The disease type-specific association of fPrP11–12 was also observed in subjects with other prion diseases. An fPrP11–12-like C-terminal PrP fragment was detected in brain lysates from patients associated with fPrP11–12, but not from patients or normal subjects unassociated with fPrP11–12. Results indicated that fPrP was produced by CJD-associated processes in vivo. The present data provide several lines of evidence that support the need for subtyping of dCJD and contribute to the understanding of the processing of disease-specific PrP species. The unique relationship of fPrP11–12 with CJD phenotype supports the view that the phenotypic heterogeneity of CJD is related to the formation of different types of disease-specific PrP and fragments thereof.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
