- Volume 82, Issue 6, 2001
Volume 82, Issue 6, 2001
- Animal: DNA Viruses
-
-
-
In vitro selection of human cytomegalovirus variants unable to transfer virus and virus products from infected cells to polymorphonuclear leukocytes and to grow in endothelial cells
Four human cytomegalovirus (HCMV) isolates from different clinical sources were extensively propagated in human embryonic lung fibroblasts (HELF). Plaque isolates from each of the four virus strains were evaluated for their ability to be transferred to polymorphonuclear leukocytes (PMNL) and to grow in endothelial cells (EC). While all four of the clinical strains were found to be both PMNL- and EC-tropic, variants were identified from each of the four strains that lacked both biological properties, while three of the four parental strains lost their transfer capacity before passage 50 in HELF. It was demonstrated that one of the four field isolates (VR6110) and its transfer-deficient variant were genetically related, but showed different curves of virus yield in HELF. In addition, neither the immediate-early (IE) mRNA nor the IE protein p72 were found to be transferred to PMNL before 72 h post-infection (late in infection) or in the presence of viral DNA replication inhibitors. These findings link EC and PMNL tropism and suggest that PMNL tropism is a late HCMV function.
-
-
-
-
Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97
The UL97-encoded protein kinase (pUL97) of human cytomegalovirus (HCMV) plays a critical role in the control of virus replication. Deletion of the UL97 gene results in a drastic reduction in the replication efficiency. Although the exact function of pUL97 remains unclear and its sensitivity to specific inhibitors is speculative, protein kinase inhibitors of the indolocarbazole class are effective inhibitors of cytomegalovirus. Based on the phosphorylation of ganciclovir (GCV), a novel quantification system for pUL97 kinase activity was established: the phosphorylated form of GCV exerts an easily quantifiable cytotoxic effect in transfected cells. Importantly, the addition of indolocarbazole compounds, Gö6976 and NGIC-I, which were highly effective at nanomolar concentrations while other protein kinase inhibitors were not, led to a significant reduction of pUL97 kinase activity. It was also demonstrated that a catalytically inactive mutant of pUL97, K355M, and a GCV-resistant mutant, M460I, were both negative for GCV phosphorylation, although protein phosphorylation remained detectable for the latter mutant. In vitro kinase assays were used to confirm the levels of pUL97-mediated phosphorylation recorded. To generate a tool for screening large numbers of putative inhibitors that preferentially interfere with GCV as well as protein phosphorylation, pUL97-expressing cell clones with stable pUL97 kinase activity were selected. This study demonstrates that certain indolocarbazole compounds are potent pUL97 inhibitors and, therefore, represent novel candidates for antiviral drugs that target viral protein kinase functions.
-
-
-
Role of Epstein–Barr virus-encoded latent membrane protein 2A on virus-induced immortalization and virus activation
More LessTo quantitatively evaluate the role of Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in immortalization of peripheral B-lymphocytes, we used the Akata cell system to generate an EBV recombinant in which the first exon of the LMP2A gene was disrupted. The results indicated that deletion of the LMP2A gene did not affect the immortalization efficiency of EBV in B-lymphocytes. Deletion of the LMP2A gene made EBV-transformed lymphocytes more permissive for virus replication in response to surface immunoglobulin cross-linking. On the other hand Akata cells, in which LMP2A expression was much lower than in EBV-transformed lymphocytes, were equally permissive for virus replication whether they were infected with wild EBV or LMP2A-knockout EBV. The results raise a question as to the role of LMP2A in inhibition of disruption of virus latency in vivo, where LMP2A expression has been expected to be low as in Akata cells.
-
-
-
Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells
Translation elongation factor 1δ (EF-1δ) is hyperphosphorylated in various mammalian cells infected with alpha-, beta- and gammaherpesviruses and EF-1δ modification is mediated by viral protein kinases, including UL13 of herpes simplex virus type 1 and UL97 of human cytomegalovirus. In this study, the following is reported. (i) BGLF4 encoded by the prototype gammaherpesvirus Epstein–Barr virus was purified as a fusion protein that was labelled with [γ-32P]ATP and labelling was eliminated by phosphatase. (ii) The ratio of the hyperphosphorylated form of human EF-1δ was increased both in Sf9 cells after infection with baculoviruses expressing GST–BGLF4 fusion proteins and in COS-7 cells after transfection with a BGLF4 expression plasmid. These results indicate that purified BGLF4 possesses protein kinase activity and mediates EF-1δ hyperphosphorylation. These data also support the hypothesis that the protein kinases that are conserved by herpesviruses universally mediate EF-1δ modification in mammalian cells.
-
-
-
Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins
More LessThe coxsackievirus and adenovirus receptor (CAR) is a high affinity receptor used by adenoviruses, including adenovirus type 5 (Ad5). The adenovirus fibre molecule bears the high affinity cell binding domain of Ad5, allowing virions to attach to CAR. The avian adenovirus CELO displays two fibre molecules on its capsid and it was logical to expect that the cell binding functions of CELO might also reside in one or both of these fibres. We had previously shown that the cell binding properties of CELO resemble Ad5, suggesting that the two viruses use similar receptors. Experiments with CAR-deficient CHO cells and CHO cells modified to express CAR demonstrated that CELO has CAR-dependent transduction behaviour like Ad5. Mutations were introduced into the CELO genome to disrupt either the long fibre 1 or the short fibre 2. A CELO genome with fibre 2 disrupted did not generate virus, demonstrating that fibre 2 is essential for some stage in virus growth, assembly or spread. However, a CELO genome with disrupted fibre 1 gene produced virus (CELOdF1) that was capable of entering chicken cells, but had lost both the ability to efficiently transduce human cells and the CAR-specific transduction displayed by wild-type CELO. The ability of CELOdF1 to transduce chicken cells suggests that CELOdF1 may still bind, probably via fibre 2, to a receptor expressed on avian but not mammalian cells. CELOdF1 replication was dramatically impaired in chicken embryos, demonstrating that fibre 1 is important for the in vivo biology of CELO.
-
-
-
Cellular transcription factors that interact with p6 promoter elements of parvovirus B19
More LessAll transcripts of the human parvovirus B19 identified so far are regulated by a single promoter at map unit 6 of the viral genome, the so-called p6 promoter. This promoter is active in a wide variety of different cells. In order to identify cellular transcription factors involved in regulating promoter activity, we performed gel-retardation and supershift assays using the parts of the p6 promoter sequence shown previously to be protected in footprint experiments. Thereby, binding was demonstrated of the Oct-1 protein to an octamer motif within the p6 promoter and of the transcription factor Sp1 to three GC boxes. A specific preferential interaction of the factor Sp3 with one of these boxes was observed, indicating that the ratio Sp1:Sp3 may be involved in the regulation of promoter activity. Consensus sites for the regulatory protein YY1 are located close to the GC boxes and the octamer motif, to which this factor binds efficiently.
-
- Plant
-
-
-
Genes Ia, II, III, IV and V of Soybean chlorotic mottle virus are essential but the gene Ib product is non-essential for systemic infection
More LessSoybean chlorotic mottle virus (SbCMV) is the type species of the genus ‘Soybean chlorotic mottle-like viruses’, within the family Caulimoviridae. The double-stranded DNA genome of SbCMV (8178 bp) contains eight major open reading frames (ORFs). Viral genes essential and non-essential for the replication and movement of SbCMV were investigated by mutational analysis of an infectious 1·3-mer DNA clone. The results indicated that ORFs Ia, II, III, IV and V were essential for systemic infection. The product of ORF Ib was non-essential, although the putative tRNAMet primer-binding site in ORF Ib was proved to be essential. Immunoselection PCR revealed that an ORF Ia deletion mutant was encapsidated in primarily infected cells, indicating that ORF Ia is required for virus movement but not for replication. ORF IV was confirmed to encode a capsid protein by peptide sequencing of the capsid. Analysis of the viral transcripts showed that the SbCMV DNA genome gives rise to a pregenomic RNA and an ORF VI mRNA, as shown in the case of Cauliflower mosaic virus.
-
-
-
-
Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid
More LessPotato spindle tuber viroid (PSTVd) is a covalently closed circular RNA molecule of 359 nucleotides that replicates within the nucleus of host cells. To determine how this small, highly structured RNA enters the nucleus, we have developed a virus-based, whole plant in vivo assay that uses green fluorescent protein (GFP) as the reporter molecule. The coding region of GFP was interrupted by insertion of an intron derived from the intervening sequence 2 of the potato ST-LS1 gene. A cDNA copy of the complete PSTVd genome was, in turn, embedded within the intron, and this construct was delivered into Nicotiana benthamiana plants via a vector based on Potato virus X. The intron-containing GFP subgenomic RNA synthesized during virus infection cannot produce a functional GFP unless the RNA is imported into the nucleus, where the intron can be removed and the spliced RNA returned to the cytoplasm. The appearance of green fluorescence in leaf tissues inoculated with constructs containing a full-length PSTVd molecule embedded in the intron indicates that nuclear import and RNA splicing events did occur.
-
-
-
A comparison of the solution structures of tobacco rattle and tobacco mosaic viruses from Raman optical activity
More LessVibrational Raman optical activity (ROA) spectra of tobacco rattle virus (TRV) and tobacco mosaic virus (TMV) were measured and compared with a view to obtaining new information about the coat protein subunit structure of TRV. A sharp strong positive band observed at ∼1344 cm−1 in the ROA spectra of the two viruses is evidence that both contain a significant amount of a hydrated form of α-helix, but more in TRV than in TMV. Although the ROA spectrum of TMV shows significant positive intensity in the range ∼1297–1312 cm−1 characteristic of α-helix in a hydrophobic environment, as expected from the helix interface residues in the four-helix bundles that constitute the basic motif of the TMV coat protein fold, that of TRV shows little positive ROA intensity here. Instead TRV shows a strong positive ROA band at ∼1315 cm−1, of much greater intensity than bands shown here by TMV, that is characteristic of polyproline II (PPII) helix. This suggests that the additional long central and C-terminal sequences of the TRV coat proteins contain a significant amount of PPII structure, plus perhaps some β-strand judging by a prominent sharp negative ROA band shown by TRV at ∼1236 cm−1, but little α-helix. The open flexible hydrated nature of PPII helical structure is consistent with the earlier suggestions that the additional sequences are exposed and, together with a larger amount of hydrated α-helix, could serve to fill the extra volume required by the larger diameter of the cylindrical TRV particles relative to those of TMV.
-
-
-
Visualization by atomic force microscopy of tobacco mosaic virus movement protein–RNA complexes formed in vitro
More LessThe structure of complexes formed in vitro by tobacco mosaic virus (TMV)-coded movement protein (MP) with TMV RNA and short (890 nt) synthetic RNA transcripts was visualized by atomic force microscopy on a mica surface. MP molecules were found to be distributed along the chain of RNA and the structure of MP–RNA complexes depended on the molar MP:RNA ratios at which the complexes were formed. A rise in the molar MP:TMV RNA ratio from 20:1 to 60–100:1 resulted in an increase in the density of the MP packaging on TMV RNA and structural conversion of complexes from RNase-sensitive ‘beads-on-a-string’ into a ‘thick string’ form that was partly resistant to RNase. The ‘thick string’-type RNase-resistant complexes were also produced by short synthetic RNA transcripts at different MP:RNA ratios. The ‘thick string’ complexes are suggested to represent clusters of MP molecules cooperatively bound to discrete regions of TMV RNA and separated by protein-free RNA segments.
-
-
-
Nucleotide sequence of the coat protein gene of Lettuce big-vein virus
More LessA sequence of 1425 nt was established that included the complete coat protein (CP) gene of Lettuce big-vein virus (LBVV). The LBVV CP gene encodes a 397 amino acid protein with a predicted M r of 44486. Antisera raised against synthetic peptides corresponding to N-terminal or C-terminal parts of the LBVV CP reacted in Western blot analysis with a protein with an M r of about 48000. RNA extracted from purified particles of LBVV by using proteinase K, SDS and phenol migrated in gels as two single-stranded RNA species of approximately 7·3 kb (ss-1) and 6·6 kb (ss-2). After denaturation by heat and annealing at room temperature, the RNA migrated as four species, ss-1, ss-2 and two additional double-stranded RNAs (ds-1 and ds-2). The Northern blot hybridization analysis using riboprobes from a full-length clone of the LBVV CP gene indicated that ss-2 has a negative-sense nature and contains the LBVV CP gene. Moreover, ds-2 is a double-stranded form of ss-2. Database searches showed that the LBVV CP most resembled the nucleocapsid proteins of rhabdoviruses. These results indicate that it would be appropriate to classify LBVV as a negative-sense single-stranded RNA virus rather than as a double-stranded RNA virus.
-
-
-
Mutational analysis of the proteinase function of Potato leafroll virus
More LesscDNA expression vectors of Potato leafroll virus (PLRV) were used to analyse specific mutations in the proteinase and replicase domains of the proteins encoded by ORF1 and ORF2. Agrobacterium-mediated DNA transfer was used to introduce a PLRV RNA expression unit, controlled by the 35S promoter of Cauliflower mosaic virus, into potato leaf cells. Expression of unmodified PLRV cDNA led to the replication of viral genomic and subgenomic RNAs and accumulation of the viral capsid protein, whereas alteration of amino acids GDD513–515 of the replicase to VHD abolished PLRV replication. Mutations in the presumed H-D-S catalytic triad of the viral proteinase abolished the formation of viral genomic and subgenomic RNAs as well as synthesis of the viral capsid protein. Co-agroinoculation of the GDD mutant along with any of the proteinase mutants restored virus replication in leaf discs, showing that these mutants are able to complement each other. Moreover, mutation of the postulated serine residue of the catalytic triad of the proteinase altered the pattern of proteins synthesized in vitro in comparison to wild-type, further supporting the relevance of the H-D-S motif.
-
-
-
The ORF0 product of Potato leafroll virus is indispensable for virus accumulation
Using a cDNA expression cassette in combination with agroinoculation of potato leaf discs we have investigated the role the protein encoded by ORF0 of Potato leafroll virus (PLRV) and have shown its importance for virus accumulation. Two mutations introduced into ORF0 by site-directed mutagenesis prevented expression of the corresponding protein and completely abolished virus accumulation in plant cells. They did not, however, affect translation of ORF1 and ORF2. We therefore conclude that ORF0 of PLRV produces a protein essential for virus accumulation, a hitherto undescribed finding.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)