-
Volume 82,
Issue 5,
2001
Volume 82, Issue 5, 2001
- Animal: DNA Viruses
-
-
-
Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8
The expression of major histocompatibility complex class I (MHC-I) molecules at the cell surface was down-regulated in BC-3 cells infected with Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 at early times after treatment with 12-O-tetradecanoylphorbol acetate (TPA), and in HeLa cells transfected with the K5 gene of KSHV. However, an immunoprecipitation study on these cells with anti-MHC-I monoclonal antibody revealed that there was no significant reduction in the synthesis of MHC-I molecules. A pulse–chase analysis followed by endoglycosidase H digestion also demonstrated the stability and transport of MHC-I molecules from the endoplasmic reticulum to at least the medial-Golgi. K5 antigen was clearly detected by immunohistological examination of samples from Kaposi’s sarcoma, primary effusion lymphoma and Castleman’s disease. These results suggest that the down-regulation of MHC-I molecules by K5 gene expression during reactivation may be important for evading immunological surveillance in the host.
-
-
-
-
A bovine macrophage cell line supports bovine herpesvirus-4 persistent infection
More LessAlthough bovine herpesvirus-4 (BHV-4), a gammaherpesvirus lacking a clear disease association, has been demonstrated in many tissues during persistent BHV-4 infection, a likely site of virus persistence is in cells of the monocyte/macrophage lineage. To establish an in vitro model of persistent infection potentially useful for examining the molecular mechanisms of BHV-4 persistence/latency, we infected the bovine macrophage cell line BOMAC. Following extensive cell death, surviving cells were found to be persistently infected, maintaining the viral genome over many passages and producing low levels of infectious virus. Although selection was unnecessary for the maintenance of the viral genome, cells persistently infected with recombinant BHV-4 containing a neomycin-resistance gene could be selected with geneticin, thus confirming that persistent BHV-4 infection was compatible with cell survival and replication. Furthermore, persistent BHV-4 infection caused no decrease in the growth rate of BOMAC cells. Sodium butyrate, which reactivates latent gammaherpesviruses in vitro, or dexamethasone, which reactivates latent BHV-4 in vivo, increased viral DNA by 10- to 15-fold in persistently infected BOMAC cells. This suggests that reactivation of latent BHV-4 by dexamethasone in vivo might involve direct action of dexamethasone on latently infected cells.
-
-
-
Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor
More LessMurine gammaherpesvirus (MHV-68) is well established as a small animal model for the study of gammaherpesviruses. The MHV-68 genome contains an open reading frame (ORF74) that has significant sequence homology with mammalian G-protein coupled receptors (GPCRs) and the GPCR from the related Kaposi’s sarcoma-associated herpesvirus (KSHV). Here we show that the MHV-68 ORF74 is predicted to encode a GPCR since it has seven potential transmembrane helices and that it has other sequence motifs in common with GPCRs. Of interest is the observation that the sequence around a conserved arginine at the start of the second intracellular loop suggests that the ORF74 product may signal constitutively (agonist independent). Given that the ORF74 product is predicted to encode a GPCR we named it MHV-GPCR. In studies on the transcription of the MHV-GPCR, we determined that it was encoded on multiple early transcripts of 3·4, 4·4, 6·6 and 8·7 kb in size. At least one of these transcripts was bicistronic, containing the ORF encoding the Bcl-2 homologue also. In vivo, we found that MHV GPCR was expressed during acute infection but also during persistence, particularly in the lungs of infected mice. Immunofluorescence studies indicated that the MHV GPCR protein was expressed on the surface of cells in patches. Finally, like the KSHV GPCR, expression of the MHV GPCR resulted in transformation of NIH 3T3 cells. We surmise, therefore, that the MHV GPCR may act in concert with genes with which it is expressed such as vBcl-2 to enhance the growth and survival of MHV-68-infected cells.
-
-
-
A mutational analysis of the vaccinia virus B5R protein
More LessA mutational analysis of the vaccinia virus (VV) B5R protein is presented. This protein is related to the regulators of complement activation (RCA) superfamily, has four short consensus repeats (SCRs) that are typical of this superfamily and is present on extracellular enveloped virus (EEV) particles. Here we have constructed VV mutants in which the cytoplasmic tail (CT) of the B5R protein is progressively truncated, and domains of the B5R protein [the SCR (short consensus repeat) domains, the transmembrane anchor region or the CT] are substituted by corresponding domains from the VV haemagglutinin (HA), another EEV protein. Analysis of these mutant viruses showed that loss of the B5R CT did not affect the formation of intracellular enveloped virus (IEV), actin tails, EEV or virus plaque size. However, if the SCR domains of the B5R protein were replaced by the corresponding region of the HA, the virus plaque size was diminished, the formation of actin tails was decreased severely and the titre of infectious EEV released from cells was reduced approximately 25-fold compared to wild-type virus and 5-fold compared to a virus lacking the entire B5R gene. Thus the linkage of HA to the B5R transmembrane and CT is deleterious for the formation and release of EEV and for cell-to-cell virus spread. In contrast, deletion or substitution of the B5R CT did not affect virus replication, although the amount of cell surface B5R was reduced compared to control.
-
-
-
Genetic heterogeneity among parapoxviruses isolated from sheep, cattle and Japanese serows (Capricornis crispus)
More LessStandard strains of four parapoxviruses and seven unclassified Japanese strains isolated from sheep, cattle and wild Japanese serows (Capricornis crispus) were compared molecularly. Restriction fragment length polymorphism (RFLP) analysis of viral DNA, indirect immunofluorescence assays using monoclonal antibodies, partial nucleotide sequencing of the envelope gene, phylogenetic analysis and PCR–RFLP were carried out. These analyses revealed that the parapoxviruses were divided into four groups and the region sequenced in this study was highly conserved within each group. Each of the Japanese isolates was classified into one of these groups. These findings also indicated that parapoxvirus infections among wild Japanese serows seem to be caused by at least two different parapoxviruses, bovine papular stomatitis virus and orf virus. The methods presented here are useful for genetic characterization and classification of parapoxviruses.
-
-
-
Genotypes of JC virus in East, Central and Southwest Europe
Distinctive genotypes of JC virus have been described for the major continental landmasses. Studies on European-Americans and small cohorts in Europe showed predominantly Type 1. Types 2 and 7 are found in Asia, and Types 3 and 6 in Africa. These genotypes differ in sequence by about 1–3%. Each genotype may have several subtypes which differ from each other by about 0·5–1%. The genotypes can be defined by a distinctive pattern of nucleotides in a typing region of the VP1 gene. This genotyping approach has been confirmed by phylogenetic reconstruction using the entire genome exclusive of the rearranging regulatory region. In this first large European study, we report on the urinary excretion of JCV DNA of 350 individuals from Poland, Hungary, Germany and Spain. We included Gypsy cohorts in Hungary (Roma), Germany (Sinti), and Spain (Gitano), as well as Basques in Spain. We show that while Type 1 predominates in Europe, the proportions of Type 1A and 1B may differ from East to Southwest Europe. Type 4, closely related to the Type 1 sequence (only ∼1% difference) was a minor genotype in Germany, Poland and Spain, but represented the majority in Basques. The Gitanos in Spain showed a variant Type 4 sequence termed ‘Rom-1’. Interestingly, neither the Gitanos in Spain, nor Sinti or Roma in Germany or Hungary showed the Type 2 or Type 7 genotype that might be expected if their origins were in an Asian population.
-
-
-
Identification of a genetic determinant of pathogenicity in chicken anaemia virus
More LessThe molecular basis of pathogenicity of the chicken anaemia virus (CAV) needs to be clarified in order to develop a safe, live virus vaccine. In this study, several high- and low-pathogenic infectious DNA clones were obtained from field virus samples after 12 or 38 passages in MDCC-MSB1 cells. The high-pathogenic clones induced a low haematocrit, low weight gain and high mortality. Nucleotide sequence analyses identified one amino acid, at residue 394 of the VP1 capsid protein, as a major determinant of pathogenicity. To determine the role of this amino acid in pathogenicity, chimeric infectious DNA clones and point-mutated clones were used for chicken pathogenicity tests. These analyses clearly demonstrated that residue 394 of VP1 was crucial for the pathogenicity of CAV; all of the cloned viruses with glutamine at this position were highly pathogenic, whereas those with histidine had low pathogenicity. Low-pathogenic CAV, based on an infectious DNA clone, is a candidate for a genetically homogeneous and stable CAV live vaccine.
-
- Plant
-
-
-
Virus-specific spatial differences in the interference with silencing of the chs-A gene in non-transgenic petunia
More LessPotyviruses, such as potato virus Y and tobacco etch virus, as well as cucumber mosaic cucumovirus, interfere with post-transcriptional gene silencing (PTGS). When RedStar-type Petunia hybrida cultivars, whose flowers have alternating white and pigmented sectors, were infected with these viruses, each virus induced a different pattern of restoration of floral anthocyanin pigmentation. Local reversion to coloured phenotypes in the white sectors, which occurred through interference with PTGS of the chalcone synthase A (chs-A) gene, was correlated with locally increased levels of chs-A mRNA and virus concentration. Our results show that virus infection can interfere with PTGS of a native plant gene, and that this can have profound effects on symptom expression.
-
-
-
-
An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro
More LessPlant virus movement proteins bind host components to promote virus movement from initially infected cells to neighbouring cells. In this study, cDNA clones encoding p8 and p9, two small proteins required for the movement of Turnip crinkle virus, were used as ‘bait’ in a yeast two-hybrid system to screen an Arabidopsis thaliana cDNA library for interactive proteins. One A. thaliana clone was identified that encodes a protein, designated Atp8, which interacted with p8 in yeast cells and in vitro. The apparent full-length of Atp8 mRNA was sequenced and shown to encode a protein with two possible transmembrane helices, several potential phosphorylation sites and two ‘RGD’ sequences.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
