- Volume 82, Issue 5, 2001
Volume 82, Issue 5, 2001
- Review Article
-
- Animal: RNA Viruses
-
-
-
Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex
More LessThe replicase polyproteins of equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remarkably, upon infection of Vero cells, but not of BHK-21 or RK-13 cells, EAV nsp2 is now shown to be subject to an additional, internal, cleavage. In Vero cells, approximately 50% of nsp2 (61 kDa) was cleaved into an 18 kDa N-terminal part and a 44 kDa C-terminal part, most likely by a host cell protease that is absent in BHK-21 and RK-13 cells. Although the functional consequences of this additional processing step are unknown, the experiments in Vero cells revealed that the C-terminal part of nsp2 interacts with nsp3. Most EAV nsps localize to virus-induced double-membrane structures in the perinuclear region of the infected cell, where virus RNA synthesis takes place. It is now shown that, in an expression system, the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the formation of double-membrane structures that strikingly resemble those found in infected cells. Thus, the nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.
-
-
-
-
Identification of an immunodominant epitope in the C terminus of glycoprotein 5 of porcine reproductive and respiratory syndrome virus
Glycoprotein 5 (GP5) is the major glycoprotein of porcine reproductive and respiratory syndrome virus (PRRSV). Expression of GP5 has been improved by removing the transmembrane regions. Vectors were constructed encoding complete GP5 plus three mutants: GP5 ΔNs (residues 28–201), GP5[30–67] (residues 30–67) and GP5[30–201] (residues 30–67/130–201). The three deletion mutants were expressed at levels 20–30 times higher than complete GP5. GP5[30–201] was well recognized in ELISA or immunoblotting by a collection of pig sera. All the fragments were tested for the generation of MAbs, but only the polyhistidine-tagged fragment GP5[30–201]H elicited an antibody response sufficient to produce MAbs. The two MAbs were positive for PRRSV in ELISA and immunoblotting, but negative for virus neutralization. MAb 4BE12 reacted with residues 130–170 and MAb 3AH9 recognized residues 170–201. This region was recognized strongly in immunoblotting by a collection of infected-pig sera. These results indicate diagnostic potential for this epitope.
-
-
-
Phylogenetic analyses confirm the high prevalence of hepatitis C virus (HCV) type 4 in the Seine-Saint-Denis district (France) and indicate seven different HCV-4 subtypes linked to two different epidemiological patterns
Hepatitis C virus (HCV) has been classified into six clades as a result of high genetic variability. In the Seine-Saint-Denis district of north-east Paris, the prevalence of HCV-4, which usually infects populations from Africa or the Middle East, is twice as high as that recorded for the whole of continental France (10·2 versus 4·5%). Although the pathogenicity of HCV-4 remains unknown, resistance of HCV-4 to therapy appears to be similar to that observed for HCV-1. In order to characterize the epidemiology of HCV-4 in Paris, sequences of the non-structural 5B gene (332 bp) were obtained from 38 HCV-4-infected patients. Extensive phylogenetic analyses indicated seven different HCV-4 subtypes. Moreover, phylogenetic tree topologies clearly distinguished two epidemiological profiles. The first profile (52·6% of patients) reflects the intra-suburban emergence of two distinct HCV-4 subclades occurring mainly among intravenous drug users (65% of patients). The second profile shows six subclades [HCV-4a, -4f, -4h, -4k, -4a(B) and a new sequence] and accounts for patients from Africa (Egypt and sub-Saharan countries) who have unknown risk factors (77·8% of patients) and in whom no recent diffusion of HCV-4 is evident. This study indicates the high diversity of HCV-4 and the extension of HCV-4a and -4d subclades among drug users in France.
-
-
-
Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’
The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A ‘primary’ intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational ‘cleavage’ products quantified. The processing products from our artificial polyprotein systems showed a molar excess of ‘cleavage’ product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and β-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNAGly ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal ‘skip’ from one codon to the next without the formation of a peptide bond.
-
-
-
The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences
The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins ‘cleaving’ at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to β-glucuronidase (GUS) – forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (∼90%) were in the form of the ‘cleavage’ products GUS and [GFP2A]. Alternative models have been proposed to account for the ‘cleavage’ activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring ‘2A-like’ sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that ‘cleavage’ occurred in constructs in which all the candidate nucleophilic residues were substituted – with the exception of aspartate-12. This residue is not, however, conserved amongst all functional ‘2A-like’ sequences. ‘2A-like’ sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial α-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial α-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the Picornaviridae. Taken together, these data provide additional evidence that neither FMDV 2A nor ‘2A-like’ sequences are autoproteolytic elements.
-
-
-
Roles of the H-2D b and H-K b genes in resistance to persistent Theiler’s murine encephalomyelitis virus infection of the central nervous system
More LessTheiler’s murine encephalomyelitis virus, a member of the Picornaviridae family, persists in the spinal cord of susceptible strains of mice. Resistant strains of mice, such as the H-2 b strain, clear the virus infection after an acute encephalomyelitis. The H-2D locus, but not the H-2K locus, has a major effect on this resistance, although both loci code for MHC class I molecules with similar general properties. For the present work, we rendered susceptible H-2 q FVB/N mice transgenic for either the H-2D b gene, the H-2K b gene or a chimeric H-2D b /K b gene in which the exons encoding the peptide-binding groove of the H-2K b gene have been replaced by those of the H-2D b gene. Mice transgenic for either the H-2D b gene or the chimeric H-2D b /K b gene were significantly more resistant to persistent virus infection than mice transgenic for the H-2K b gene, suggesting that the difference in the effects of the H-2D b gene and the H-2K b gene are due to the nature of the peptides presented by these class I molecules.
-
-
-
Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning
More LessThe mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT–PCR products cloned in E. coli). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.
-
-
-
Comparison of capsid sequences from human and animal astroviruses
We have sequenced the genomic 3′-end, including the structural gene, of human astrovirus (HAstV) serotype 7 and morphologically related viruses infecting pig (PAstV), sheep (OAstV) and turkey (TAstV-1). These sequences were compared with corresponding astrovirus sequences available in the nucleic acid databases, including sequences of the seven other HAstV serotypes, two other avian astroviruses (TAstV-2 and avian nephritis virus) and astrovirus from cat (FAstV). A 35 nt stem–loop motif near the 3′-end of the genome, previously described as being highly conserved, was present in all of the astroviruses except TAstV-2. In the N-terminal half of the capsid precursor protein, there were several short conserved peptide motifs. Otherwise the capsid proteins of astroviruses infecting different hosts were highly divergent. Calculation of genetic distances revealed that the distance between FAstV and HAstV is comparable to the largest distances between different HAstV serotypes. Higher similarities between the HAstV, FAstV and PAstV capsid sequences suggest interspecies transmissions involving humans, cats and pigs relatively recently in the evolutionary history of astroviruses.
-
-
-
Differential processing and presentation of the H-2Db-restricted epitope from two different strains of influenza virus nucleoprotein
More LessThe influenza virus strains A/NT/60/68 and A/PR/8/34 both have an immunodominant Db-restricted epitope in their nucleoprotein (NP) at amino acid residues 366–374, with two amino acid differences between the epitopes. Cross-reactive cytotoxic T lymphocytes (CTLs) were generated by priming mice with the influenza virus A/NT/60/68 NP and restimulating in vitro with influenza virus A/PR/8/34. CTLs that gave high levels of specific lysis recognized target cells infected with either strain of influenza virus with similar efficiency. Surprisingly, when target cells were infected with recombinant vaccinia viruses (VV) expressing the two different NPs, presentation of the Db-restricted epitope from the A/NT/60/68 NP was extremely poor, whereas presentation of the equivalent epitope from the A/PR/8/34 NP was as efficient as in influenza virus-infected cells. This difference was observed in spite of the fact that the two NP sequences show 94% identity at the amino acid sequence level. Experiments with additional cross-reactive CTL cell lines which recognized target cells less efficiently revealed a similar difference in presentation between the two NP epitopes in influenza virus-infected cells and showed a difference in the efficiency of presentation of the Db-restricted epitope from the two NP molecules independent of VV infection. The results show that two equivalent epitopes in highly similar proteins are processed with very different efficiency, even though they are both immunodominant epitopes. They also suggest that the previously described inhibition of antigen presentation by VV is a general, non-specific effect, which is more apparent for epitopes that are processed and presented less efficiently.
-
-
-
Nucleotides at the extremities of the viral RNA of influenza C virus are involved in type-specific interactions with the polymerase complex
More LessInfluenza A and C viruses share common sequences in the terminal noncoding regions of the viral RNA segments. Differences at the 5′- and 3′-ends exist, however, that could contribute to the specificity with which the transcription/replication signals are recognized by the cognate polymerase complexes. Previously, by making use of a transient expression system for the transcription and replication of a reporter RNA template bearing either type A or type C extremities, it was shown that a type C RNA template is transcribed and replicated with equal efficiency by either the type A or the type C polymerase complex, whereas a type A RNA template is less efficiently transcribed and replicated by the type C polymerase complex than by the type A complex. To explore the contribution of the nucleotides at the extremities of the RNAs to this type-specificity, the effect of mutations introduced either alone or in combination at nucleotide 5 at the 3′-end and at nucleotides 3′, 6′ or 8′ at the 5′-end of type A or C RNA templates were studied in the presence of either the type A or the type C polymerase complex. The results indicate that the nature of nucleotides 5 and 6′ contribute to type-specificity. Moreover, these results underline the importance of the base pairing between nucleotide 3′ and 8′ at the 5′-end of the RNA. Thus, it could be suggested that the nature of the nucleotides as well as the stability of the secondary structure at the extremities of the viral RNA are important determinants of type-specificity.
-
-
-
The sites for fatty acylation, phosphorylation and intermolecular disulphide bond formation of influenza C virus CM2 protein
The sites for fatty acylation, disulphide bond formation and phosphorylation of influenza C virus CM2 were investigated by site-specific mutagenesis. Cysteine 65 in the cytoplasmic tail was identified as the site for palmitoylation. Removal of one or more of three cysteine residues in the ectodomain showed that all of cysteines 1, 6 and 20 can participate in the formation of disulphide-linked dimers and/or tetramers, although cysteine 20 may play the most important role in tetramer formation. Furthermore, it was found that serine 78, located within the recognition motifs for mammary gland casein kinase and casein kinase I, is the predominant site for phosphorylation, although serine 103 is phosphorylated to a minor extent by proline-dependent protein kinase. The effects of acylation and phosphorylation on the formation of disulphide-linked oligomers were also studied. The results showed that, while palmitoylation has no role in oligomer formation, phosphorylation accelerates tetramer formation without influencing dimer formation. CM2 mutants defective in acylation, phosphorylation or disulphide bond formation were all transported to the cell surface, suggesting that none of these modifications is required for proper oligomerization. When proteins solubilized in detergent were analysed on sucrose gradients, however, the mutant lacking cysteines 1, 6 and 20 sedimented as monomers, raising the possibility that disulphide bond formation, although not essential for proper oligomerization, may stabilize the CM2 multimer. This was supported by the results of chemical cross-linking analysis, which showed that the triple-cysteine mutant can form multimers.
-
-
-
A complex human immunodeficiency virus type 1 A/G/J recombinant virus isolated from a seronegative patient with AIDS from Benin, West Africa
More LessA human immunodeficiency virus type 1 (HIV-1B76) originating from Benin (West Africa) was isolated and characterized. The patient had severe clinical AIDS and presented an unusual serological profile. Only one out of five different detection assays was able to demonstrate the presence of antibodies to HIV, whereas confirmatory assays remained indeterminate. In contrast, both plasma viral load and p24 antigen level were unusually high. HIV-1 infection was proved by viral RNA and proviral DNA amplification. HIV-1B76 partially purified lysate reacted strongly with all anti-HIV-1-positive sera from the region but B76 plasma did not react with subtype A control viral antigen. This patient is likely to have had severe acquired immune dysfunction explaining her lack of immunological reactivity. Phylogenetic analysis of the genome identified a complex HIV-1 A/G/J recombinant. The gag and pol genes, and the majority of nef,are characteristic of subtype A; the gag/pol junction, the 3′ end of pol, vpu and env genes were characteristic of subtype G; vif, vpr and the 5′ end of nef were subtype J. In addition, part of the HIV-1B76 genome had considerable sequence similarity with the previously described CRF06 cpx (BFP90) isolate. HIV-1B76 did not exhibit any remarkable replication properties or cell tropism in vitro.
-
-
-
Apoptosis is induced by infectious bursal disease virus replication in productively infected cells as well as in antigen-negative cells in their vicinity
More LessThe kinetics of infectious bursal disease virus (IBDV) replication and induction of apoptosis were investigated in vitro and in vivo. After infection of chicken embryo (CE) cells with IBDV strain Cu-1, the proportion of apoptotic cells increased from 5·8% at 4 h post-infection (p.i.) to 64·5% at 48 h p.i. The proportion of apoptotic cells correlated with IBDV replication. UV-inactivated IBDV particles did not induce apoptosis. Double labelling revealed that, early after infection, the majority of antigen-expressing cells were not apoptotic; double-labelled cells appeared more frequently at later times. Remarkably, apoptotic cells were frequently located in the vicinity of antigen-expressing cells. This indicated that an apoptosis-inducing factor(s) might be released by cells that replicate IBDV. Since interferon (IFN) production has been demonstrated after IBDV infection, IFN was considered to be one of several factors. However, supernatants of infected CE cells in which virus infectivity had been neutralized were not sufficient to induce apoptosis.Similar results were observed in the infected bursae of Fabricius: early after infection, most of the cells either showed virus antigens or were apoptotic. Again, double-labelled cells appeared more frequently late after infection. This suggests that indirect mechanisms might also be involved in the induction of apoptosis in vivo, contributing to the rapid depletion of cells in the IBDV-infected bursa.
-
- Animal: DNA Viruses
-
-
-
The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent
More LessHerpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) null mutants reactivate poorly in the rabbit ocular model. The situation in mice is less clear. Reports concluding that LAT null mutants reactivate poorly in the mouse explant-induced reactivation (EIR) model are contradicted by a similar number of reports of normal EIR of LAT− mutants in mice. To determine if the EIR phenotype might be mouse strain-dependent we infected BALB/c and Swiss Webster mice with LAT− or LAT+ virus and assessed EIR in individual trigeminal ganglia. Compared to LAT+ virus, LAT− virus reactivated poorly in Swiss Webster mice (P<0·05). In contrast, the EIR phenotype of these viruses was similar in BALB/c mice (P>0·1). Thus, LAT appeared to have a much greater impact on the EIR phenotype in Swiss Webster mice than in BALB/c mice. The mouse strain therefore appeared consequential in the HSV-1 EIR phenotype in mice.
-
-
-
-
The genome of herpesvirus of turkeys: comparative analysis with Marek’s disease viruses
The complete coding sequence of the herpesvirus of turkeys (HVT) unique long (UL) region along with the internal repeat regions has been determined. This allows completion of the HVT nucleotide sequence by linkage to the sequence of the unique short (US) region. The genome is approximately 160 kbp and shows extensive similarity in organization to the genomes of Marek’s disease virus serotypes 1 and 2 (MDV-1, MDV-2) and other alphaherpesviruses. The HVT genome contains 75 ORFs, with three ORFs present in two copies. Sixty-seven ORFs were identified readily as homologues of other alphaherpesvirus genes. Seven of the remaining eight ORFs are homologous to genes in MDV, but are absent from other herpesviruses. These include a gene with similarity to cellular lipases. The final, HVT-unique gene is a virus homologue of the cellular NR-13 gene, the product of which belongs to the Bcl family of proteins that regulate apoptosis. No other herpesvirus sequenced to date contains a homologue of this gene. Of potential significance is the absence of a complete block of genes within the HVT internal repeat that is present in MDV-1. These include the pp38 and meq genes, which have been implicated in MDV-1-induced T-cell lymphoma. By implication, other genes present in this region of MDV-1, but missing in HVT, may play important roles in the different biological properties of the viruses.
-
-
-
Binding of human and animal immunoglobulins to the IgG Fc receptor induced by human cytomegalovirus
More LessHuman cytomegalovirus (HCMV)-infected cells express a virus-encoded receptor that is able to bind the Fc part of IgG. Some basic binding properties of this Fc receptor (FcR) have been examined. The affinity constant (K a) for human IgG Fc fragment in its interaction with acetone-fixed, HCMV-infected human embryonic lung fibroblasts was estimated to be around 2×108 M−1 and the number of binding sites was estimated to be around 2×106 per cell. Of the human IgG, IgA, IgM and IgD classes, only IgG reacted with the receptor, and all four of the IgG subclasses were reactive. IgG from rabbit, hamster, cat, swine and horse exhibited binding to the HCMV FcR, in contrast to IgG from mouse, rat, guinea pig, dog, sheep, goat, cow and chicken. Immunoglobulins with and without HCMV IgG FcR-binding properties, like IgG from rabbit and mouse, can be of value in revealing the functional importance of the receptor. When the immunoglobulins were tested against herpes simplex virus type 1-induced FcR, both similarities and differences in immunoreactivity were seen relative to the HCMV FcR, which makes it unlikely that the binding sites for these two herpesvirus FcRs on the IgG molecule are identical.
-
-
-
Late temporal gene expression from the human cytomegalovirus pp28US (UL99) promoter when integrated into the host cell chromosome
More LessToward understanding the temporal regulation of human cytomegalovirus (HCMV) late genes, we studied the regulation of the late gene promoter (pp28US, UL99) when outside the context of the viral genome and its response to the immediate early (IE) proteins. Expression of the luciferase reporter gene, regulated by the pp28US promoter, was synchronous with that of the endogenous viral pp28 gene, independently of whether the reporter was episomal or integrated into the glioblastoma cell line U373MG. Cotransfection of the reporter with expression vectors for each of the three major IE genes, IE72, IE86 and IE55, indicated that only IE86 transactivated the pp28US promoter. However, the magnitude of the promoter activation upon HCMV infection suggested that additional factors are also required for higher promoter activity. The promoter activation was specific to HCMV, as herpes simplex virus type 1 infection did not induce luciferase expression.
-
-
-
Epstein–Barr virus gene polymorphisms in Chinese Hodgkin’s disease cases and healthy donors: identification of three distinct virus variants
Epstein–Barr virus (EBV) is associated with several malignancies. Specific EBV gene variants, e.g. the BamHI f configuration, a C-terminal region 30 bp deletion in the latent membrane protein-1 (LMP1) gene (del-LMP) and the loss of an XhoI site in LMP1 (XhoI-loss), are found in Chinese cases of nasopharyngeal carcinoma (NPC), suggesting that EBV sequence variation may be involved in oncogenesis. In order to understand better the epidemiology of these EBV variants, they were studied in virus isolates from EBV-positive Chinese cases of Hodgkin’s disease (HD; n=71) and donor throat washings from healthy Chinese. Sequencing was performed of 15 representative EBV isolates, including the first analysis of the LMP1 promoter in Asian wild-type EBV isolates. The following observations were made. (i) Three EBV LMP1 variants were identified, designated Chinese groups (CG) 1–3. In both EBV-associated HD and in healthy Chinese, CG1-like viruses showing del-LMP1 and XhoI-loss were predominant. (ii) CG1viruses were distinct from European and African variants, suggesting that this profile is useful for epidemiological studies. (iii) Specific patterns of mutations were present in the LMP1 promoter in both CG1 and CG2. (iv) The BamHI f variant was not found in Chinese HD, in contrast to Chinese NPC and European HD. This study confirms that EBV isolates in Chinese HD and other tumours differ from those reported in Western cases. However, this reflects the predominant virus strain present in the healthy Chinese population, suggesting that these are geographically restricted polymorphisms rather than tumour-specific strains.
-
-
-
Demonstration by single-cell PCR that Reed–Sternberg cells and bystander B lymphocytes are infected by different Epstein–Barr virus strains in Hodgkin’s disease
Epstein–Barr virus (EBV) is associated with Hodgkin’s disease (HD). However, EBV-positive Reed–Sternberg (RS) cells and EBV-positive B lymphocytes co-exist in the same EBV-positive lymph node affected by HD. In a previous report, using total lymph node DNA, the presence of two distinct EBV strains was demonstrated, but their cellular localization (i.e. RS cells vs B lymphocytes) could not be determined. To address this question, three patients with EBV-associated HD were selected in the present study and single-cell PCR of the latent membrane protein-1 (LMP-1) gene from isolated RS cells was performed. In one case, it was clear that RS cells and B lymphocytes were infected by different EBV strains. In the two remaining cases, only one band was detected from total lymph node DNA. However, single-cell PCR showed that RS cells in each sample were infected by single EBV strains, which were different from those detected in lymphoblastoid cell lines derived from EBV-positive B lymphocytes of lymph node cell suspensions from these two patients.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)