- Volume 82, Issue 2, 2001
Volume 82, Issue 2, 2001
- Insect
-
-
-
Negative regulatory regions of the PAT1 promoter of Hz-1 virus contain GATA elements which associate with cellular factors and regulate promoter activity
More LessThe persistence-associated transcript 1 (PAT1) is actively expressed during persistent infection with Hz-1 virus, while transcription of the rest of the viral genes is shut down. Previously, results of a series deletion of the PAT1 promoter suggested that the regions from nucleotides −312 to −212 and nucleotides −158 to −90 negatively regulate the promoter activity. Here, the negative regulatory effect of the −312/−90 fragment was confirmed using a heterologous IE0 promoter of Autographa californica multiple nucleopolyhedrovirus. Further, the negative regulation of the −312 to −212 region was orientation-independent. The results of electrophoresis mobility shift assays showed that cellular protein(s) bind specifically to DNA fragments −312/−212 and −158/−90. In each of these fragments, a GATA element was identified by computer-assisted analysis. Mutating both GATA elements in the −312/−90 fragment completely eliminated its negative effect on IE0 promoter activity, while mutating only one of these elements had little or no effect. Together, these results suggest that the GATA element has a negative regulatory role on the IE0 and PAT1 promoters.
-
-
- Plant
-
-
-
Cell-to-cell movement of potato virus X involves distinct functions of the coat protein
Complementation of movement-deficient potato virus X (PVX) coat protein (CP) mutants, namely PVX.CP-Xho lacking the 18 C-terminal amino acid residues and PVX.ΔCP lacking the entire CP gene, was studied by transient co-expression with heterologous proteins. These data demonstrated that the potyvirus CPs and both the major and minor CPs of beet yellows closterovirus could complement cell-to-cell movement of PVX.CP-Xho but not PVX.ΔCP. These data also indicated that the C-terminally truncated PVX CP lacked a movement function which could be provided in trans by the CPs of other filamentous viruses, whereas another movement determinant specified by some region outside the most C-terminal part of the PVX CP could not be complemented either by potyvirus or closterovirus CPs. Surprisingly, the CP of spherical cocksfoot mottle sobemovirus rescued all of the PVX CP movement functions, complementing the spread of PVX.CP-Xho and, to a lesser extent, PVX.ΔCP. Both these mutants were also rescued by the tobacco mosaic virus (TMV) movement protein (MP). To shed light on the movement function of PVX CP, attempts were made to complement PVX.CP-Xho by a series of TMV MP mutants. An internal deletion abolished complementation, suggesting that the internal region of TMV MP, which includes a number of overlapping functional domains important for cell-to-cell transport, provides an activity complementing movement determinant(s) specified by the C-terminal region of PVX CP.
-
-
-
-
Banana bunchy top nanovirus DNA-1 encodes the ‘master’ replication initiation protein
More LessBanana bunchy top nanovirus has a multicomponent, circular single-stranded DNA genome comprising at least six integral components, BBTV DNA-1 to -6, which have been consistently associated with bunchy top disease worldwide. At least three other components, BBTV S1, S2 and Y, which have been isolated from Taiwanese BBTV isolates, do not appear to be integral components. We show here that both BBTV DNA-1 and S1, which encode replication initiation (Rep) proteins, were capable of self-replication when bombarded into banana embryogenic cell suspensions. However, only BBTV DNA-1 was capable of directing the replication of two other BBTV genomic components, namely BBTV DNA-3 which encodes the coat protein, and DNA-5 which encodes a retinoblastoma binding-like protein. These results indicate that (i) BBTV DNA-1 is the minimal replicative unit of BBTV and encodes the ‘master’ viral Rep and (ii) BBTV S1 is possibly a satellite DNA which is unable to replicate integral BBTV components.
-
- Other Agents
-
-
-
Heat stability of prion rods and recombinant prion protein in water, lipid and lipid–water mixtures
More LessPrion rods, i.e. insoluble infectious aggregates of the N-terminally truncated form of the prion protein, PrP 27–30, and the corresponding recombinant protein, rPrP(90–231), were autoclaved in water, bovine lipid or lipid–water mixtures for 20 min at temperatures from 100 to 170 °C. A protocol was developed for the quantitative precipitation of small amounts of protein from large excesses of lipid. PrP remaining undegraded after autoclaving was quantified by Western blot and degradation factors were calculated. The Arrhenius plot of the rate of degradation vs temperature yielded linear relationships for prion rods in water or lipid–water as well as for rPrP(90–231) in lipid–water. The presence of lipids increased the heat stability of prion rods, especially at lower temperatures. Prion rods had a much higher thermal stability compared to rPrP. Autoclaving of prion rods in pure lipid gave different results – not simple degradation but bands indicative of covalently linked dimers, tetramers and higher aggregates. The heat stability of prion rods in pure lipid exceeded that in lipid–water mixtures. Degradation factors larger than 104 were reached at 170 °C in the presence of lipids and at 150 °C in the absence of lipids. The linear correlation of the data allows cautious extrapolation to conditions not tested, i.e. temperatures higher than 170 °C. A factual basis for assessing the biological safety of industrial processes utilizing potentially BSE-or scrapie-contaminated animal fat is provided.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)