-
Volume 82,
Issue 10,
2001
Volume 82, Issue 10, 2001
- Insect
-
-
-
The complete sequence of the Cydia pomonella granulovirus genome
More LessThe nucleotide sequence of the DNA genome of Cydia pomonella granulovirus (CpGV) was determined and analysed. The genome is composed of 123500 bp and has a G+C content of 45·2%. It contains 143 ORFs of 150 nucleotides or more that show minimal overlap. One-hundred-and-eighteen (82·5%) of these putative genes are homologous to genes previously identified in other baculoviruses. Among them, 73 are homologous to genes of Autographa californica nucleopolyhedrovirus (AcMNPV), whereas 108 and 98 are homologous to genes of Xestia c-nigrum GV (XcGV) and Plutella xylostella GV (PxGV), respectively. These homologues show on average 37·4% overall amino acid sequence identity to those from AcMNPV and 45% to those from XcGV and PxGV. The CpGV gene content was compared to that of other baculoviruses. Several genes reported to have major roles in baculovirus biology were not found in the CpGV genome, such as gp64, the major budded virus glycoprotein gene in some nucleopolyhedroviruses, and lef-7, involved in DNA replication. However, the CpGV genome encodes the large and small subunits of ribonucleotide reductase, three inhibitor of apoptosis (iap) homologues and two protein tyrosine phosphatases. The CpGV, PxGV and XcGV genomes present a noticeably high level of conservation of gene order and orientation. A striking feature of the CpGV genome is the absence of typical homologous repeat sequences. However, it contains one major repeat region and 13 copies of a single 73–77 bp imperfect palindrome.
-
-
- Plant
-
-
-
Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation
More LessCitrus yellow mosaic virus (CYMV), a member of the family Caulimoviridae, genus Badnavirus, causes citrus mosaic disease, a disease that occurs commonly in India. The CYMV genome has been cloned and its complete nucleotide sequence determined. Its DNA genome is 7559 bp in length and contains six putative open reading frames (ORFs), all on the plus-strand of the genome and each capable of encoding proteins with a molecular mass of greater than 10 kDa. ORF 3, the largest ORF, encodes a putative polyprotein for functions involved in virus movement, assembly and replication. The other ORFs encode proteins whose exact functions are not completely understood. The genome also contains a plant tRNAmet-binding site, which may serve as a primer for minus-strand DNA synthesis, in its intergenic region. Phylogenetic analysis of the badnaviruses revealed that CYMV is most closely related to Cacao swollen shoot virus. It was demonstrated that a construct containing 1·4 copies of the cloned CYMV genome could infect sweet orange via Agrobacterium-mediated inoculation.
-
-
-
-
Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus
More LessThe complete nucleotide sequence of the blackgram isolate of mungbean yellow mosaic virus, IMYMV-Bg, which infects legumes in India, was determined and compared at the amino acid level with those of other whitefly-transmitted geminiviruses. The genome organization of IMYMV-Bg was similar to that of the begomoviruses. A unique feature of the genome organization was the sequence divergence of the common region (CR) between DNA-A and DNA-B. In order to understand the mechanism of viral DNA replication, the replication initiator protein, Rep, of IMYMV-Bg was overexpressed in E. coli. The recombinant and refolded Rep bound to CR-sequences of IMYMV-Bg in a specific manner. In this study, evidence is presented for ATP-upregulated cleavage function and ATP-mediated conformational change of Rep. It is hypothesized that, although ATP is not required for cleavage, ATP-mediated conformational changes may result in better access of Rep to the DNA-cleavage site. Evidence is also presented for a site-specific topoisomerase function of Rep, which has not been demonstrated before. The Rep protein can be classified as a type-I topoisomerase because of its nicking activity and sensitivity towards camptothecin, a topoisomerase type-I inhibitor.
-
-
-
RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus
The 63 kDa ‘63K’ movement protein encoded by the triple gene block of poa semilatent virus (PSLV) comprises the C-terminal NTPase/helicase domain and the N-terminal extension domain, which contains two positively charged sequence motifs, A and B. In this study, the in vitro RNA-binding properties of PSLV 63K and its mutants were analysed. Membrane-immobilized 63K and N-63K (isolated N-terminal extension domain) bound RNA at high NaCl concentrations. In contrast, C-63K (isolated NTPase/helicase domain) was able to bind RNA only at NaCl concentrations of up to 50 mM. In gel-shift assays, C-63K bound RNA to form complexes that were unable to enter an agarose gel, whereas complexes formed by N-63K could enter the gel. Full-length 63K formed both types of complexes. Visualization of the RNA–protein complexes formed by 63K, N-63K and C-63K by atomic force microscopy demonstrated that each complex had a different shape. Collectively, these data indicate that 63K has two distinct RNA-binding activities associated with the NTPase/helicase domain and the N-terminal extension domain. Mutations in either of the positively charged sequence motifs A and B had little effect on the RNA binding of the N-terminal extension domain, whereas mutations in both motifs together inhibited RNA binding. Hybrid viruses with mutations in motifs A and B were able to infect inoculated leaves of Nicotiana benthamiana plants, but were unable to move systemically to uninoculated leaves, suggesting that the RNA-binding activity of the N-terminal extension domain of PSLV 63K is associated with virus long-distance movement.
-
-
-
Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively
Various functions of the cell-to-cell movement protein (MP) of Groundnut rosette virus (GRV) were analysed. The GRV ORF4-encoded protein was shown by immunofluorescence microscopy to generate tubular structures that protrude from the surface of the protoplast. The protein encoded by ORF4 was assessed also for RNA-binding properties. This protein was tagged at its C terminus with six histidine residues, produced in Escherichia coli using an expression vector and purified by affinity chromatography. Gel retardation analysis demonstrated that, in contrast to many other viral MPs, including the 3a MP of Cucumber mosaic virus (CMV), the ORF4-encoded protein bound non-cooperatively to viral ssRNA and formed complexes of low protein:RNA ratios. Competition binding experiments showed that the ORF4-encoded protein bound to both ssRNA and ssDNA without sequence specificity, but did not bind to dsDNA. UV cross-linking and nitrocellulose membrane-retention assays confirmed that both the GRV and the CMV MPs formed complexes with ssRNA and that these complexes showed similar stability in NaCl. Probing the MP–RNA complexes by atomic force microscopy demonstrated that the ORF4-encoded protein bound RNA incompletely, leaving protein-free RNA segments of varying length, while the CMV 3a protein formed highly packed complexes. The significance of the two properties of limited RNA binding and tubule formation of the umbraviral MP is discussed.
-
- Other Agents
-
-
-
Distribution of the prion protein in sheep terminally affected with BSE following experimental oral transmission
More LessThis study has examined the distribution of PrPSc in sheep by immunocytochemistry of tissues recovered from terminally affected animals following their experimental infection by the oral route with BSE. Despite a wide range of incubation period lengths, affected sheep showed a similar distribution of high levels of PrPSc throughout the central nervous system. PrPSc was also found in the lymphoid system, including parts of the digestive tract, and some components of the peripheral nervous system. These abundant PrPSc deposits in sheep in regions outside the central nervous system are in direct contrast with cattle infected with BSE, which show barely detectable levels of PrPSc in peripheral tissues. A number of genetically susceptible, challenged animals appear to have survived.
-
-
-
-
PrPCWD in the myenteric plexus, vagosympathetic trunk and endocrine glands of deer with chronic wasting disease
More LessAccumulated evidence in experimental and natural prion disease systems supports a neural route of infectious prion spread from peripheral sites of entry to the central nervous system. However, little is known about prion trafficking routes in cervids with a naturally occurring prion disease known as chronic wasting disease (CWD). In the brain, the pathogenic isoform of the prion protein (PrPCWD) accumulates initially in the dorsal motor nucleus of the vagus nerve. To assess whether alimentary-associated neural pathways may play a role in prion trafficking, neural and endocrine tissues from mule deer naturally infected with CWD (n=6) were examined by immunohistochemistry. PrPCWD was detected in the myenteric plexus, vagosympathetic trunk, nodose ganglion, pituitary, adrenal medulla and pancreatic islets. No to scant PrPCWD staining was detected in other nerves or ganglia (brachial plexus, sciatic nerve, gasserian ganglion, coeliac ganglion, cranial cervical ganglion, spinal nerve roots) of CWD-positive deer and no PrPCWD was detected in nerves or endocrine tissues from 11 control deer. These findings suggest that: (i) transit of PrPCWD in nerves, either centrifugally or centripetally, is one route of prion trafficking and organ invasion and (ii) endocrine organs may also be targets for cervid pathogenic prion accumulation.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
