- Volume 80, Issue 8, 1999
Volume 80, Issue 8, 1999
- Plant
-
-
-
A naturally occurring deleted form of RNA 2 of Potato mop-top virus
More LessA spontaneous deletion in RNA 2 of Potato mop-top virus (PMTV) was identified by RT–PCR. The deletion occurred reproducibly during manual passage of two isolates of PMTV and during fungal inoculation of plants with viruliferous soil. The borders of the deletion were conserved in all instances and sequence analyses showed that a contiguous segment of 2113 nucleotides was deleted internally from the genomic RNA 2, leaving the 5′- and 3′-terminal sequences. RT–PCR experiments also showed that the deletion was present in preparations of PMTV particles.
-
-
-
-
A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses
More LessIn plant pararetroviruses, pregenomic RNA (pgRNA) directs synthesis of circular double-stranded viral DNA and serves as a polycistronic mRNA. By computer-aided analysis, the 14 plant pararetroviruses sequenced so far were compared with respect to structural organization of their pgRNA 5′-leader. The results revealed that the pgRNA of all these viruses carries a long leader sequence containing several short ORFs and having the potential to form a large stem–loop structure; both features are known to be inhibitory for downstream translation. Formation of the structure brings the first long ORF into the close spatial vicinity of a 5′-proximal short ORF that terminates 5 to 10 nt upstream of the stable structural element. The first long ORF on the pgRNA is translated by a ribosome shunt mechanism discovered in cauliflower mosaic (CaMV) and rice tungro bacilliform viruses, representing the two major groups of plant pararetroviruses. Both the short ORF and the structure have been implicated in the shunt process for CaMV pgRNA translation. The conservation of these elements among all plant pararetroviruses suggests conservation of the ribosome shunt mechanism. For some of the less well-studied viruses, the localization of the conserved elements also allowed predictions of the pgRNA promoter region and the translation start site of the first long ORF.
-
-
-
Sequence changes in six variants of rice tungro bacilliform virus and their phylogenetic relationships
The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
-
-
-
Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host
More LessViroids, small single-stranded circular RNAs endowed with autonomous replication, are unique systems to conduct evolutionary studies of complete RNA genomes. The primary structure of 36 progeny variants of peach latent mosaic viroid (PLMVd), evolved from inoculations of the peach indicator GF-305 with four individual PLMVd cDNAs differing in their pathogenicity, has been determined. Most progeny variants had unique sequences, revealing that the extremely heterogeneous character of PLMVd natural isolates most probably results from the intrinsic ability of this RNA to accumulate changes, rather than from repeated inoculations of the same individual trees under field conditions. The structure of the populations derived from single PLMVd sequences differed according to the observed phenotype. Variant gds6 induced a reproducible symptomatic infection and gave rise to a more uniform progeny that preserves some parental features, whereas variant gds15, which induced a variable phenotype, showed a more complex behaviour, generating two distinct progenies in symptomatic and asymptomatic individual plants. Progenies derived from variants esc10 and ls11, which incited latent infections, followed a similar evolutionary pattern, leading to a population structure consisting of two main groups of variants, one of which was formed by variants closely related to the parental sequence. The evolution rate exhibited by PLMVd, considerably higher than that reported for potato spindle tuber viroid, may contribute to the fluctuating symptomatology of the severe PLMVd natural isolates. However, the polymorphism observed in PLMVd progenies does preserve some structural and functional elements previously proposed for this viroid, supporting the fact that they act as constraints limiting the genetic divergence of PLMVd quasispecies generated de novo.
-
- Other Agents
-
-
-
PrP (prion) gene expression in sheep may be modulated by alternative polyadenylation of its messenger RNA
More LessScrapie-associated fibrils and their major protein component, PrP or prion protein, accumulate in the brains and some other tissues of all species affected by transmissible spongiform encephalopathies or prion diseases. To investigate the role of PrP gene expression in the hosts of these diseases, we have analysed some characteristics of PrP gene RNA transcripts in sheep and cattle tissues and made comparisons with PrP RNA transcripts in human and mouse tissues. Two PrP messenger RNAs of 4·6 kb and 2·1 kb, the result of alternative polyadenylation, were found first in sheep peripheral tissues and also occurred at low levels in sheep brain and bovine tissues, but not in human and mouse tissues. Our results from transfection assays of murine neuroblastoma cells with constructs expressing different regions of ovine PrP messenger RNA revealed the presence of sequences in the 3′ untranslated region of the gene that modulate protein synthesis.
-
-
- Corrigendum
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)