-
Volume 100,
Issue 7,
2019
Volume 100, Issue 7, 2019
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV Virus Taxonomy Profile: Nimaviridae
The family Nimaviridae includes the single species White spot syndrome virus, isolates of which infect a wide range of aquatic crustaceans and cause substantial economic losses. Virions are ellipsoid to bacilliform with a terminal thread-like extension. The circular dsDNA genome is 280–307 kbp with several homologous repeat regions. More than 80 structural and functional proteins have been characterized from 531 ORFs. White spot syndrome is a highly lethal, contagious disease associated with white spot syndrome virus infection of shrimps. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nimaviridae, which is available at www.ictv.global/report/nimaviridae.
-
-
- Animal
-
- Double-strand RNA Virus
-
-
Whole-genome-based characterization of three human Rotavirus C strains isolated from gastroenteritis outbreaks in Western India and a provisional intra-genotypic lineage classification system
More LessThe number of whole-genome sequences of human rotavirus C (RVC) strains available in public databases is recently increasing. Thus far from India only a single whole genome of human RVC of a sporadic case was available. In this study, nearly full-length genome sequencing and phylogenetic analyses of three RVC strains isolated from three different gastroenteritis outbreaks during 2010–2014 in Western India was carried out. Further, an intra-genotypic lineage classification system for human RVCs based on the nucleotide divergence cut-off values was proposed by using the algorithm of the Rotavirus Classification Working Group. Two lineages could be defined for all the genes except the VP7 gene and the M3 VP3 genotype. Provisional classification of the lineages indicated the absence of reassortment events in the genomic constellation of Indian strains, contrary to earlier reports. The comparatively higher variability of the NSP1, NSP3, NSP5 and M2 VP3 genotype, emphasizes their utility in lineage classification.
-
- Negative-strand RNA Viruses
-
-
Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis
The surface protein haemagglutinin (HA) of influenza A viruses (IAV) needs to be cleaved by a host protease to become functional. Here, we investigated if IAV of the H10 subtype also requires TMPRSS2 for replication and pathogenesis in mice. We first showed in cell culture that TMPRSS2 is able to cleave H10-HA. When Tmprss2−/− deficient mice were infected with a re-assorted virus H10-HA, they did not lose body weight and no viral replication was observed in contrast to wild-type mice. Histopathological analysis showed that inflammatory lesions in the lung of Tmprss2−/− mice were reduced compared to wild-type mice. In addition, no viral antigen was detected in the lungs of Tmprss2−/− mice and no evidence for HA cleavage was observed. We conclude from these studies that TMPRSS2 activity is also essential for in vivo replication and pathogenesis of H10 IAV.
-
-
-
Segment 2 from influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D
Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.
J.W.McC. was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).
-
-
-
Rift Valley fever virus minigenome system for investigating the role of L protein residues in viral transcription and replication
Replicon systems are important tools for investigating viral RNA synthesis. We have developed an ambisense minigenome system for Rift Valley fever virus (RVFV) with the aim to analyse the effects of L gene mutations on viral transcription versus replication. The overall activity of the replication complex was assessed by expression of a luciferase reporter gene. Northern blot analysis enabled differentiation between synthesis of viral mRNA and replication intermediates. The functionality of the system was demonstrated by probing residues predictably involved in the cap-snatching endonuclease active site in the L protein. Corresponding mutations led to a selective defect in the viral mRNA synthesis as described for other bunyaviruses. The analysis of further L gene mutants revealed an essential role of a C-terminal region in the RVFV L protein in viral transcription. In summary, the established minigenome system is suitable for functional testing of the relevance of residues for viral transcription and replication.
-
-
-
Roles of YIGL sequence of Ebola virus VP40 on genome replication and particle production
More LessEbola virus (EBOV) VP40 is a major driving force of nascent virion production and a negative regulator of genome replication/transcription. Here, we showed that the YIGL sequence at the C-terminus of EBOV VP40 is important for virus-like particle (VLP) production and the regulation of genome replication/transcription. Accordingly, a mutation in the YIGL sequence caused defects in VLP production and genome replication/transcription. The residues I293 and L295 in the YIGL sequence were particularly critical for VLP production. Furthermore, an in silico analysis indicated that the amino acids surrounding the YIGL sequence contribute to intramolecular interactions within VP40. Among those surrounding residues, F209 was shown to be critical for VLP production. These results suggested that the VP40 YIGL sequence regulates two different viral replication steps, VLP production and genome replication/transcription, and the nearby residue F209 influences VLP production.
-
-
-
Evaluation of the role of respiratory syncytial virus surface glycoproteins F and G on viral stability and replication: implications for future vaccine design
Respiratory syncytial virus (RSV) remains a leading cause of infant mortality worldwide and exhaustive international efforts are underway to develop a vaccine. However, vaccine development has been hindered by a legacy of vaccine-enhanced disease, poor viral immunogenicity in infants, and genetic and physical instabilities. Natural infection with RSV does not prime for enhanced disease encouraging development of live-attenuated RSV vaccines for infants; however, physical instabilities of RSV may limit vaccine development. The role of RSV strain-specific differences on viral physical stability remains unclear. We have previously demonstrated that the RSV fusion (F) surface glycoprotein is responsible for mediating significant differences in thermostability between strains A2 and A2-line19F. In this study, we performed a more comprehensive analysis to characterize the replication and physical stability of recombinant RSV A and B strains that differed only in viral attachment (G) and/or F surface glycoprotein expression. We observed significant differences in thermal stability, syncytia size, pre-fusion F incorporation and viral growth kinetics in vitro, but limited variations to pH and freeze–thaw inactivation among several tested strains. Consistent with earlier studies, A2-line19F showed significantly enhanced thermal stability over A2, but also restricted growth kinetics in both HEp2 and Vero cells. As expected, no significant differences in susceptibility to UV inactivation were observed. These studies provide the first analysis of the physical stability of multiple strains of RSV, establish a key virus strain associated with enhanced thermal stability compared to conventional lab strain A2, and further support the pivotal role RSV F plays in virus stability.
-
- Positive-strand RNA Virus
-
-
Efficacy of glecaprevir and pibrentasvir treatment for genotype 1b hepatitis C virus drug resistance-associated variants in humanized mice
Mitsutaka Osawa, Takuro Uchida, Michio Imamura, Yuji Teraoka, Hatsue Fujino, Takashi Nakahara, Atsushi Ono, Eisuke Murakami, Tomokazu Kawaoka, Daiki Miki, Masataka Tsuge, Akira Hiramatsu, Hiromi Abe-Chayama, C. Nelson Hayes, Grace Naswa Makokha, Hiroshi Aikata, Yuji Ishida, Chise Tateno, Yohei Miyayama, Makoto Hijikata and Kazuaki ChayamaCombination therapy with glecaprevir (GLE) and pibrentasvir (PIB) has high efficacy for pan-genotypic hepatitis C virus (HCV)-infected patients. However, the efficacy for patients who acquired potent NS5A inhibitor resistance-associated variants (RAVs) as a result of failure to respond to previous direct-acting antiviral (DAA) therapies is unclear. We investigated the efficacy of GLE/PIB treatment for genotype 1b HCV strains containing RAVs using subgenomic replicon systems and human hepatocyte transplanted mice. Mice were injected with serum samples obtained from a DAA-naïve patient or daclatasvir plus asunaprevir (DCV/ASV) treatment failures including NS5A-L31M/Y93H, -P58S/A92K or -P32 deletion (P32del) RAVs, then treated with GLE/PIB. HCV was eliminated by GLE/PIB treatment in mice with wild-type and NS5A-L31M/Y93H but relapsed in mice with NS5A-P58S/A92K, followed by emergence of additional NS5A mutations after cessation of the treatment. In NS5A-P32del-infected mice, serum HCV RNA remained positive during the GLE/PIB treatment. NS5A-P58S/A92K showed 1.5-fold resistance to PIB relative to wild-type based on analysis using HCV subgenomic replicon systems. When mice were administered various proportions of HCV wild-type and P32del strains and treated with GLE/PIB, serum HCV RNA remained positive in mice with high frequencies of P32del. In these mice, the P32del was undetectable by deep sequencing before GLE/PIB treatment, but P32del strains relapsed after cessation of the GLE/PIB treatment. GLE/PIB is effective for wild-type and NS5A-L31M/Y93H HCV strains, but the effect seems to be low for P58S/A92K and NS5A-P32del RAVs. Although NS5A-P32del was not detected, the mutation may be present at low frequency in DCV/ASV treatment failures.
-
- Large DNA Virus
-
-
Identification of Marek’s disease virus genes associated with virulence of US strains
More LessMarek’s disease virus (MDV) is the most well-cited example of vaccine-driven virulence evolution. MDV induces a lymphoproliferative disease in chickens, which is currently controlled by widespread vaccination of flocks. Unfortunately, Marek’s disease (MD) vaccines, while effective in preventing tumours, do not prevent viral replication and mutation, which has been hypothesized as the major driving force for increased MDV virulence of field strains during the past 40 years in US commercial flocks. To limit future virulence increases, there is interest in characterizing MDV strain genomes collected over the years and associating genetic variations with variation in virulence. In this study, we characterized 70 MDV genomes with known virulence by complete or targeted DNA sequencing, and identified genetic variants that showed association with virulence. Our results revealed a number of MDV genes as would be expected for a complex trait. In addition, phylogenetic analysis revealed a clear separation of strains that varied by virulence. Interestingly, high virulence isolates from the same farms persisted over years despite eradication attempts, which has implications on control efforts. Given the growing ability to bioengineer the MDV genome, it should be feasible to experimentally test whether these individual variants influence virulence markers alone or combinations. Once validated, these markers may provide an alternative to live bird testing for evaluating virulence of new MDV field strains.
-
- Retroviruses
-
-
HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1
HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.
-
- Insect
-
- DNA Virus
-
-
The virome of an endangered stingless bee suffering from annual mortality in southern Brazil
Meliponiculture – the management of stingless bee colonies – is an expanding activity in Brazil with economic, social and environmental potential. However, unlike in apiculture, the pathogens that impact on meliponiculture remain largely unknown. In southern Brazil, every year at the end of the summer, managed colonies of the stingless bee Melipona quadrifasciata manifest a syndrome that eventually leads to collapse. Here we characterize the M. quadrifasciata virome using high-throughput sequencing, with the aim of identifying potentially pathogenic viruses, and test whether they are related to the syndrome outbreaks. Two paired viromes are explored, one from healthy bees and another from unhealthy ones. Each virome is built from metagenomes assembled from sequencing reads derived either from RNA or DNA. A total of 40 621 reads map to viral contigs of the unhealthy bees’ metagenomes, whereas only 11 reads map to contigs identified as viruses of healthy bees. The viruses showing the largest copy numbers in the virome of unhealthy bees belong to the family Dicistroviridae – common pathogenic honeybee viruses – as well as Parvoviridae and Circoviridae, which have never been reported as being pathogenic in insects. Our analyses indicate that they represent seven novel viruses associated with stingless bees. PCR-based detection of these viruses in individual bees (healthy or unhealthy) from three different localities revealed a statistically significant association between viral infection and symptom manifestation in one meliponary. We conclude that although viral infections may contribute to colony collapses in the annual syndrome in some meliponaries, viruses spread opportunistically during the outbreak, perhaps due to colony weakness.
-
- Plant
-
- RNA Virus
-
-
Amino acids at the exposed C-terminus of the S coat protein of cowpea mosaic virus play different roles in particle formation and viral systemic movement
More LessThe icosahedral capsid of cowpea mosaic virus is formed by 60 copies of the large (L) and small (S) coat protein subunits. The 24-amino-acid C-terminal peptide of the S coat protein can undergo proteolytic cleavage without affecting particle stability or infectivity. Mutagenic studies have shown that this sequence is involved in particle assembly, virus movement, RNA encapsidation and suppression of gene silencing. However, it is unclear how these processes are related, and which part(s) of the sequence are involved in each process. Here, we have analysed the effect of mutations in the C-terminal region of the S protein on the assembly of empty virus-like particles and on the systemic movement of infectious virus. The results confirmed the importance of positively charged amino acids adjacent to the cleavage site for particle assembly and revealed that the C-terminal 11 amino acids are important for efficient systemic movement of the virus.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less