- Volume 100, Issue 5, 2019
Volume 100, Issue 5, 2019
- Editorial
-
-
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV Virus Taxonomy Profile: Solinviviridae
Solinviviridae is a family of picorna/calici-like viruses with non-segmented, linear, positive-sense RNA genomes of approximately 10–11 kb. Unusually, their capsid proteins are encoded towards the 3′-end of the genome where they can be expressed both from a subgenomic RNA and as an extension of the replication (picorna-like helicase–protease–polymerase) polyprotein. Members of two species within the family infect ants, but related unclassified virus sequences derive from a large variety of insects and other arthropods. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Solinviviridae, which is available at www.ictv.global/report/solinviviridae.
-
-
- Animal
-
- Negative-strand RNA Viruses
-
-
Influenza virus infection as well as immunization with DNA encoding haemagglutinin protein induces potent antibody-dependent phagocytosis (ADP) and monocyte infection-enhancing responses in macaques
Antibodies directed against the conserved regions within the influenza A haemagglutinin (HA) protein are detected at low frequency in humans. These antibodies display a broad reactivity against divergent influenza virus strains and could potentially offer broad protection. The in vivo protective effect of these antibodies is mainly mediated through Fc receptor effector functions. While antibody-dependent phagocytosis (ADP) of anti-HA antibodies has been demonstrated in human sera and sera from influenza virus-infected macaques, it is not known whether ADP can also be induced by vaccination and what the relative strength of ADP responses is in comparison to other antibody functions. Using a cohort of influenza virus-infected and immunized macaques, we demonstrate that infection as well as immunization with DNA-encoding HA induces high-titre ADP responses against HA, which are of potency 100–1000 times higher than virus inhibitory functions including antibody-dependent cell-mediated cytotoxicity (ADCC), virus neutralization (VN) and haemagglutinin inhibition (HAI). ADP activity was equally high against HA of heterologous influenza strains of the same subtype, in contrast to virus inhibitory functions, which were all greatly diminished. ADP titres against H5, representing a hetero-subtypic virus, were much lower. ADP was measured in THP-1 cells but was also observed in primary peripheral blood monocytes and neutrophils. Furthermore, at high serum dilution enhanced infection of both monocytes and myeloid dendritic cells (mDC) was observed. Hence, influenza virus infection as well as DNA-immunization against HA can induce high-titre ADP responses that can potentially enhance influenza virus infection of primary phagocytic and dendritic cells.
-
-
-
Population dynamics at neuraminidase position 151 of influenza A (H1N1)pdm09 virus in clinical specimens
Influenza A virus mutates rapidly, allowing it to escape natural and vaccine-induced immunity. Neuraminidase (NA) is a surface protein capable of cleaving the glycosidic linkages of neuraminic acids to release newly formed virions from infected cells. Genetic variants within a viral population can influence the emergence of pandemic viruses as well as drug susceptibility and vaccine effectiveness. In the present study, 55 clinical specimens from patients infected with the 2009 pandemic influenza A/H1N1 virus, abbreviated as A(H1N1)pdm09, during the 2015–2016 outbreak season in Taiwan were collected. Whole genomes were obtained through next-generation sequencing. Based on the published sequences from A(H1N1)pdm09 strains worldwide, a mixed population of two distinct variants at NA position 151 was revealed. We initially reasoned that such a mixed population may have emerged during cell culture. However, additional investigations confirmed that these mixed variants were detectable in the specimens of patients. To further investigate the role of the two NA-151 variants in a dynamic population, a reverse genetics system was employed to generate recombinant A(H1N1)pdm09 viruses. It was observed that the mixture of the two distinct variants was characterized by a higher replication rate compared to the recombinant viruses harbouring a single variant. Moreover, an NA inhibition assay revealed that a high frequency of the minor NA-151 variant in A(H1N1)pdm09 was associated with a reduced susceptibility to NA inhibitors. We conclude that two distinct NA-151 variants can be identified in patient specimens and that such variants may increase viral replication and NA activity.
-
-
-
Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins
Sequences for Lloviu virus (LLOV), a putative novel filovirus, were first identified in Miniopterus schreibersii bats in Spain following a massive bat die-off in 2002, and also recently found in bats in Hungary. However, until now it is unclear if these sequences correspond to a fully functional, infectious virus, and whether it will show a pathogenic phenotype like African filoviruses, such as ebola- and marburgviruses, or be apathogenic for humans, like the Asian filovirus Reston virus. Since no infectious virus has been recovered, the only opportunity to study infectious LLOV is to use a reverse genetics-based full-length clone system to de novo generate LLOV. As a first step in this process, and to investigate whether the identified sequences indeed correspond to functional viral proteins, we have developed life cycle modelling systems for LLOV, which allow us to study genome replication and transcription as well as entry of this virus. We show that all LLOV proteins fulfill their canonical role in the virus life cycle as expected based on the well-studied related filovirus Ebola virus. Further, we have analysed the intergenus-compatibility of proteins that have to act in concert to facilitate the virus life cycle. We show that some but not all proteins from LLOV and Ebola virus are compatible with each other, emphasizing the close relationship of these viruses, and informing future studies of filovirus biology with respect to the generation of genus-chimeric proteins in order to probe virus protein–protein interactions on a functional level.
-
-
-
Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus
We previously showed that single amino acid substitutions at seven positions in haemagglutinin determined major antigenic change of influenza H3N2 virus. Here, the impact of two such substitutions was tested in 11 representative H3 haemagglutinins to investigate context-dependence effects. The antigenic effect of substitutions introduced at haemagglutinin position 145 was fully independent of the amino acid context of the representative haemagglutinins. Antigenic change caused by substitutions introduced at haemagglutinin position 155 was variable and context-dependent. Our results suggest that epistatic interactions with contextual amino acids in the haemagglutinin can moderate the magnitude of antigenic change.
-
- Positive-strand RNA Viruses
-
-
Upregulation of CHOP participates in caspase activation and virus release in human astrovirus-infected cells
More LessHuman astroviruses (HAstVs), non-enveloped RNA viruses with positive-sense RNA genomes, are an important cause of acute gastroenteritis in young children, although the processes that produce infectious virions are not clearly defined. To track the viral replication complex (RC) upon HAstV1 infection, the subcellular distribution of double-stranded (ds) RNA and of ORF1b, a viral RNA polymerase, was examined by immunocytochemistry. Foci that were positive for dsRNA and for ORF1b were co-localized, and both foci were also co-localized with resident proteins of the endoplasmic reticulum (ER). Focusing on the association between the HAstV RC and ER, we examined the expression of unfolded protein response (UPR) markers and found that targets of eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4), including CCAAT/enhancer-binding protein homologous protein (CHOP), a proapoptotic transcription factor, were upregulated at the late phase in HAstV-infected cells. Consistently, eIF2α was phosphorylated at the late phase of HAstV infection. The formation of foci resembling stress granules, another known downstream response to eIF2α phosphorylation, was also observed at the same period. Phosphorylation of eIF2α was attenuated in protein kinase R (PKR)-knockdown cells, suggesting that, unlike the canonical ER stress response, PKR was involved in eIF2α phosphorylation in response to HAstV infection. Studies have indicated that immature HAstV capsid protein is processed by caspases, and caspase cleavage is integral to particle release. Inhibition of CHOP upregulation reduced caspase activation and the release of HAstV RNA from cells during HAstV infection. Our results suggest that the eIF2α–ATF4–CHOP pathway participates in HAstV propagation.
-
-
-
First detection of bovine coronavirus in Yak (Bos grunniens) and a bovine coronavirus genome with a recombinant HE gene
Qifu He, Zijing Guo, Bin Zhang, Hua Yue and Cheng TangThe yak (Bosgrunniens) is a unique domestic bovine species that plays an indispensable role for herdsmen in the Qinghai–Tibet Plateau. Here, 336 diarrhoeic samples were collected from yaks on 29 farms in the Qinghai–Tibet Plateau from 2015 to 2017. Approximately 69.05 % (232/336) of the diarrhoeic samples were assessed as bovine coronavirus (BCoV)-positive by RT-PCR assay, and most of the detected strains showed a unique evolution based on 40 spike (S), nucleocapsid (N) and haemagglutinin-esterase (HE) gene fragments. Notably, the 12 complete S genes detected shared 1 identical amino acid mutation (E121V) in the S1 subunit compared with the other 150 complete S genes in the GenBank database. Furthermore, a BCoV strain (designated YAK/HY24/CH/2017) was isolated from one diarrhoeic sample (virus titre : 108.17TCID50 ml−1), and a phylogenetic analysis based on complete genome sequences revealed that strain YAK/HY24/CH/2017 has the closest genetic relationship with the BCoV prototype strain Mebus. Interestingly, 2 significant characteristics were observed in the genome of strain YAK/HY24/CH/2017 : (1) the strain had 26 unique amino acid variations in the S gene compared with the other 150 BCoV S genes in the GenBank database and (2) a recombination event was identified between the esterase and lectin domains of the HE gene. In conclusion, this study revealed the high prevalence of BCoV in yaks in the Qinghai–Tibet Plateau. To the best of our knowledge, this is the first description of the molecular prevalence of BCoV in yaks and of a BCoV genome with an HE gene recombination.
-
-
-
Identification of novel epitopes in serotype O foot-and-mouth disease virus by in vitro immune selection
More LessFoot-and-mouth disease virus (FMDV) displays various epitopes on the capsid outer surface. In addition to the five neutralizing antigenic sites, there is evidence of the existence of other, yet unidentified, epitopes that are believed to play a role in antibody-mediated protection. Previous attempts to identify these epitopes revealed two additional substitutions at positions VP2-74 and -191 (5M2/5 virus) to be of antigenic significance. However, complete resistance to neutralization was not obtained in the neutralization assay, indicating the existence of other, undisclosed epitopes. Results from this study provides evidence of at least two new neutralizing epitopes involving residues VP3-116 and -195 around the threefold axis that have significant impact on the antigenic nature of the virus. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and should help with rational vaccine design.
-
- Small DNA Viruses
-
-
Secondary structure of DNA released from purified capsids of human parvovirus B19 under moderate denaturing conditions
Parvovirus B19 (B19V) possesses a linear single-stranded DNA genome of either positive or negative polarity. Due to intramolecular sequence homologies, either strand may theoretically be folded in several alternative ways. Viral DNA, when extracted from virions by several procedures, presents as linear single-stranded and/or linear double-stranded molecules, except when one particular commercial kit is used. This protocol yields DNA with an aberrant electrophoretic mobility in addition to linear double-stranded molecules, but never any single-stranded molecules. This peculiar kind of DNA was found in all plasma or serum samples tested and so we decided to analyse its secondary structure. In line with our results for one- and two-dimensional electrophoresis, mobility shift assays, DNA preparation by an in-house extraction method with moderate denaturing conditions, density gradient ultracentrifugation, DNA digestion experiments and competition hybridization assays, we conclude that (i) the unique internal portions of this distinctive single-stranded molecules are folded into tight tangles and (ii) the two terminal redundant regions are associated with each other, yielding non-covalently closed pseudo-circular molecules stabilized by a short (18 nucleotides) intramolecular stem, whereas the extreme 3′- and 5′-ends are folded back on themselves, forming a structure resembling a twin hairpin. The question arises as to whether this fairly unstable structure represents the encapsidated genome structure. The answer to this question remains quite relevant in terms of comprehending the initiation and end of B19V genome replication.
-
-
-
Novel subgenotype D11 of hepatitis B virus in NaPo County, Guangxi, bordering Vietnam
Hepatitis B virus has been classified into 10 genotypes and 48 subgenotypes worldwide. We found previously, through polymerase chain reaction (PCR) amplification of a sample collected in 2011, that an HBsAg carrier was infected with two genotypes (B and D) of HBV. We carried out cloning, sequencing and phylogenetic analysis of the complete genomes and, for confirmation, analysed a sample collected from the same individual in 2018. Fifteen complete sequences were obtained from each sample. The carrier was infected in 2011 by genotypes B and D and by various recombinants, but only genotype D was present in 2018. The major and minor parents of the recombinants are genotypes B and D, respectively, although the recombination breakpoints vary among them. All 23 genotype D isolates form a cluster, branching out from other subgenotype D sequences and supported by a 100 % bootstrap value. Based on complete genome sequences, almost all of the estimated intragroup nucleotide divergence values between our isolates and HBV subgenotypes D1–D10 exceed 4 %. Compared to the other subgenotypes (D1–D10), 35 unique amino acids were present in our isolates. Our data provide evidence for a novel subgenotype, provisionally designated HBV subgenotype D11.
-
- Large DNA Viruses
-
-
Characterization of Fowlpox virus in chickens and bird-biting mosquitoes: a molecular approach to investigating Avipoxvirus transmission
Avian pox is a highly contagious avian disease, yet relatively little is known about the epidemiology and transmission of Avipoxviruses. Using a molecular approach, we report evidence for a potential link between birds and field-caught mosquitoes in the transmission of Fowlpox virus (FWPV) in Singapore. Comparison of fpv167 (P4b), fpv126 (VLTF-1), fpv175–176 (A11R-A12L) and fpv140 (H3L) gene sequences revealed close relatedness between FWPV strains obtained from cutaneous lesions of a chicken and four pools of Culex pseudovishnui, Culex spp. (vishnui group) and Coquellitidea crassipes caught in the vicinity of the study site. Chicken-derived viruses characterized during two separate infections two years later were also identical to those detected in the first event, suggesting repeated transmission of closely related FWPV strains in the locality. Since the study location is home to resident and migratory birds, we postulated that wild birds could be the source of FWPV and that bird-biting mosquitoes could act as bridging mechanical vectors. Therefore, we determined whether the FWPV-positive mosquito pools (n=4) were positive for avian DNA using a polymerase chain reaction-sequencing assay. Our findings confirmed the presence of avian host DNA in all mosquito pools, suggesting a role for Cx. pseudovishnui, Culex spp. (vishnui group) and Cq. crassipes mosquitoes in FWPV transmission. Our study exemplifies the utilization of molecular tools to understand transmission networks of pathogens affecting avian populations, which has important implications for the design of effective control measures to minimize disease burden and economic loss.
-
-
-
IRF4 promotes Epstein–Barr virus activation in Burkitt’s lymphoma cells
More LessEpstein–Barr virus (EBV) establishes a life-long latency in memory B cells, whereas plasma cell differentiation is linked to EBV lytic reactivation from latently infected B cells. EBV lytic replication is mediated by the two immediate-early switch proteins Zta and RTA. Both plasma cell transcription factors XBP-1 and Blimp-1 have been shown to enable the triggering of EBV lytic reactivation by activating the transcription of Zta or RTA. Here we show that interferon regulatory factor 4 (IRF4), another plasma cell transcription factor that is either not expressed or expressed at a low level in EBV-positive Burkitt’s lymphoma (BL) cells, can activate the promoters of EBV Zta and RTA, but is not sufficient to elicit EBV lytic reactivation in latently infected BL cells. However, ectopic IRF4 expression can augment EBV lytic gene expression induced by anti-immunoglobulin (anti-Ig) or sodium butyrate treatment in all tested lymphoma cells, whereas IRF4 knockout in Raji cells, the only BL cell line with detectable endogenous IRF4 expression, abolishes EBV lytic gene expression induced by anti-Ig, and this is accompanied by the reduction of Blimp-1 expression, whose overexpression, in turn, can rescue EBV lytic gene expression in IRF4 knockout Raji cells. Furthermore, IRF4 knockout impairs B cell receptor (BCR) signalling activation, which is required for BCR-mediated EBV reactivation. Altogether, these results demonstrate that IRF4 facilitates EBV lytic reactivation in BL cells, which involves the regulation of Blimp-1 expression and BCR signalling pathways.
-
- Retroviruses
-
-
Detection of antisense protein (ASP) RNA transcripts in individuals infected with human immunodeficiency virus type 1 (HIV-1)
The detection of antisense RNA is hampered by reverse transcription (RT) non-specific priming, due to the ability of RNA secondary structures to prime RT in the absence of specific primers. The detection of antisense RNA by conventional RT-PCR does not allow assessment of the polarity of the initial RNA template, causing the amplification of non-specific cDNAs. In this study we have developed a modified protocol for the detection of human immunodeficiency virus type 1 (HIV-1) antisense protein (ASP) RNA. Using this approach, we have identified ASP transcripts in CD4+ T cells isolated from five HIV-infected individuals, either untreated or under suppressive therapy. We show that ASP RNA can be detected in stimulated CD4+ T cells from both groups of patients, but not in unstimulated cells. We also show that in untreated patients, the patterns of expression of ASP and env are very similar, with the levels of ASP RNA being markedly lower than those of env. Treatment of cells from one viraemic patient with α-amanitin greatly reduces the rate of ASP RNA synthesis, suggesting that it is associated with RNA polymerase II, the central enzyme in the transcription of protein-coding genes. Our data represent the first nucleotide sequences obtained in patients for ASP, demonstrating that its transcription indeed occurs in those HIV-1 lineages in which the ASP open reading frame is present.
-
- Plant
-
- RNA Viruses
-
-
Distinct replication and gene expression strategies of the Rice Stripe virus in vector insects and host plants
More LessPersistent propagative plant viruses are usually transmitted between a vector insect and a host plant. To adapt to the two different organisms, viruses may show distinct genomic replication or gene expression patterns. To verify this hypothesis, we applied an aboslute real-time quantitative PCR method to measure and compare the replication levels of four genomic RNA segments and the expression levels of seven genes of rice stripe virus (RSV) according to the infection time in the small brown planthopper and rice plant, respectively. In the vector insect, RNA3 began replicating later than the other segments, and RNA2 remained nearly constant during the infection process. RNA1 was the dominant segment, and a difference of over 300-fold appeared among the four segments. In rice plants, the size of the four segments increased with infection time, but decreased to a low level in the late infection period. The ratios of the four segments varied by no more than 15-fold. In planthoppers, three expression patterns were observed for the seven viral genes during viral infection, while in rice plants, the expression patterns of the seven viral genes were similar. These results reflect distinct genomic replication and gene expression patterns in a persistent propagative plant virus in adapting to vector insects and host plants.
-
-
-
Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)