-
Volume 100,
Issue 2,
2019
Volume 100, Issue 2, 2019
- Review
-
-
-
Mosquito-borne epornitic flaviviruses: an update and review
More LessWest Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.
-
-
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV virus taxonomy profile: Picobirnaviridae
Picobirnaviridae is a family of viruses with bi-segmented (rarely unsegmented) dsRNA genomes comprising about 4.4 kbp in total, with small, non-enveloped spherical virions. The family includes one genus (Picobirnavirus) grouping three genetic clusters with high sequence variability, two defined by viruses infecting vertebrates and a third with viruses found in invertebrates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Picobirnaviridae, which is available at www.ictv.global/report/picobirnaviridae.
-
-
-
-
ICTV Virus Taxonomy Profile: Tristromaviridae
More LessTristromaviridae is a family of viruses with linear, double-stranded DNA genomes of 16–18 kbp. The flexible, filamentous virions (400±20 nm×30±3 nm) consist of an envelope and an inner core constructed from two structural units: a rod-shaped helical nucleocapsid and a nucleocapsid-encompassing matrix protein layer. Tristromaviruses are lytic and infect hyperthermophilic archaea of the order Thermoproteales . This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Tristromaviridae, which is available at www.ictv.global/report/tristromaviridae.
-
- Animal
-
- Negative-strand RNA Viruses
-
-
Characterization of Triniti virus supports its reclassification in the family Peribunyaviridae
Juliana Abreu Lima, Joaquim Pinto Nunes Neto, Karoline Silva Castro, Amélia Paes de Andrade Travassos da Rosa, Robert Tesh, Márcio Roberto Teixeira Nunes, Vsevolod Leonidovich Popov, Nikos Vasilakis, Hilda Guzman, Steven Widen, Sandro Patroca da Silva, Daniele Barbosa de Almeida Medeiros, Jedson Ferreira Cardoso, Lívia Carício Martins, Raimunda do Socorro da Silva Azevedo, Pedro Fernando da Costa Vasconcelos and Jannifer Oliveira ChiangTriniti virus (TNTV) has been isolated in Trinidad and Tobago and in Brazil. To date little is known about this virus, which is classified as an ungrouped virus within the family Togaviridae. Here, three isolates of TNTV were characterized both genetically and antigenically. The genome was shown to contain three RNA segments: small (S), medium (M) and large (L). Genome organization, protein sizes and protein motifs were similar to those of viruses in the genus Orthobunyavirus, family Peribunyaviridae. Antigenic reactivity revealed the three TNTV isolates to be closely related, but no serologic cross-reaction with other orthobunyaviruses. Morphological observation by transmission electron microscopy indicated that virus size and symmetry were compatible with those of viruses in the family Peribunyaviridae. Our serological, morphological and molecular results support the taxonomic reclassification of TNTV as a member of the genus Orthobunyavirus, family Peribunyaviridae.
-
-
-
Defining of MAbs-neutralizing sites on the surface glycoproteins Gn and Gc of a hantavirus using vesicular stomatitis virus pseudotypes and site-directed mutagenesis
More LessEarlier four monoclonal antibodies (MAbs) against surface glycoproteins Gn and Gc of puumala virus (PUUV, genus Orthohantavirus, family Hantaviridae, order Bunyavirales) were generated and for three MAbs with neutralizing capacity the localization of binding epitopes was predicted using pepscan and phage-display techniques. In this work, we produced vesicular stomatitis virus (VSV) particles pseudotyped with the Gn and Gc glycoproteins of PUUV and applied site-directed mutagenesis to dissect the structure of neutralizing epitopes. Replacement of cysteine amino acid (aa) residues with alanines resulted in pseudotype particles with diminished (16 to 18 %) neut-titres; double Cys→Ala mutants, as well as mutants with bulky aromatic and charged residues replaced with alanines, have shown even stronger reduction in neut-titres (from 25 % to the escape phenotype). In silico modelling of the neut-epitopes supported the hypothesis that these critical residues are located on the surface of viral glycoprotein molecules and thus can be recognized by the antibodies indeed. A similar pattern was observed in experiments with mutant pseudotypes and sera collected from patients suggesting that these neut-epitopes are utilized in a course of human PUUV infection. These data will help understanding the mechanisms of hantavirus neutralization and assist construction of vaccine candidates.
-
- Positive-strand RNA Viruses
-
-
Engagement of cellular cholesterol in the life cycle of classical swine fever virus: its potential as an antiviral target
Classical swine fever virus (CSFV), the etiological agent of classical swine fever in pigs, is a member of the Pestivirus genus within the Flaviviridae family. It has been proposed that CSFV infection is significantly inhibited by methyl-β-cyclodextrin (MβCD) treatment. However, the exact engagement of cellular cholesterol in the life cycle of CSFV remains unclear. Here, we demonstrated that pretreatment of PK-15 cells with MβCD significantly decreased the cellular cholesterol level and resulted in the inhibition of CSFV infection, while replenishment of exogenous cholesterol in MβCD-treated cells recovered the cellular cholesterol level and restored the viral infection. Moreover, we found that depletion of cholesterol acted on the early stage of CSFV infection and blocked its internalization into the host cells. Furthermore, we showed that 25-hydroxycholesterol, a regulator of cellular cholesterol biosynthesis, exhibited a potent anti-CSFV activity by reducing cellular cholesterol level. Taken together, our findings highlight the engagement of cholesterol in the life cycle of CSFV and its potential use as an antiviral target.
-
-
-
Infection of covert mortality nodavirus in Japanese flounder reveals host jump of the emerging alphanodavirus
More LessInterspecies transmission of viruses, where a pathogen crosses species barriers and jumps from its original host into a novel species, has been receiving increasing attention. Viral covert mortality disease, caused by covert mortality nodavirus (CMNV), is an emerging disease that has recently had a substantial impact on shrimp aquaculture in Southeast Asia and Latin America. While investigating the host range of CMNV, we found that this virus is also capable of infecting populations of the farmed Japanese flounder Paralichthys olivaceus, a vertebrate host. The infected fish were being raised in aquaculture facilities that were also producing marine shrimp. Through RT-nPCR, targeting the RNA-dependent RNA polymerase (RdRp) gene of CMNV, we found that 29 % of the fish sampled were positive. The amplicons were sequenced and aligned to the RdRp gene of shrimp CMNV and were found to have 98 % identity. Histopathological examination indicated that CMNV-positive fish showed vacuolation of nervous tissue in the eye and brain, as well as extensive necrosis of cardiac muscle. In situ hybridization showed positive reactions in tissues of the eye, brain, heart, liver, spleen and kidney of infected fish. Transmission electron microscopy showed the presence of CMNV-like particles in all of the above-mentioned tissues, except for brain. The novel finding of a shrimp alphanodavirus that can also infect farmed P. olivaceus indicates that this virus is capable of naturally crossing the species barrier and infecting another vertebrate. This finding will contribute to the development of efficient strategies for disease management in aquaculture.
-
-
-
Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells
More LessJapanese encephalitis virus (JEV), a mosquito-borne flavivirus, is one of the leading global causes of virus-induced encephalitis. The infectious life-cycle of viruses is heavily dependent on the host membrane trafficking network. Here, we have performed a RNA-interference-based screen using a siRNA panel targeting 136 membrane trafficking proteins to identify the key regulators of JEV infection in HeLa cells. We identified 35 proteins whose siRNA depletion restricts JEV replication by over twofold. We observe that JEV infection in HeLa cells is largely dependent on components of the clathrin-mediated endocytic (CME) pathway. Proteins involved in actin-filament-based processes, specifically CDC42 and members of the ARP2/3 complex are crucial for establishment of infection. Pharmacological pertubations of actin polymerization, a small molecule inhibitor of actin nucleation by the ARP2/3 complex – CK-548 – and the inhibitor of neural Wiskott–Aldrich syndrome proteins– Wiskostatin– inhibited JEV replication, highlighting the important role of the dynamic actin network. Other proteins involved in cargo-recognition for CME and endomembrane system organization were also validated as essential host factors for virus replication.
-
-
-
Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles
More LessIn this study, ten sites on the N terminus and different surface variable regions (VRs) of the bovine parvovirus (BPV) VP2 capsid protein were selected according to an alignment of its sequence with that of the BPV-1 strain HADEN for insertion of the type O foot-and-mouth disease virus (FMDV) conserved neutralizing epitope 8E8. Ten epitope-chimeric BPV VP2 capsid proteins carrying the 8E8 epitope were expressed in Sf9 cells, and electron micrographs demonstrated that these fusion proteins self-assembled into virus-like particles (VLPs) with properties similar to those of natural BPV virions. Immunofluorescence assay (IFA) and Western blot analysis demonstrated that each of the ten epitope-chimeric VLPs reacted with both anti-BPV serum and anti-type O FMDV mAb 8E8. These results indicated that insertions of the 8E8 epitope at these sites on the BPV VP2 protein did not interfere with the immunoreactivity of VP2 or VLP formation, and that the exogenous epitope 8E8 was correctly expressed in BPV VLPs. In addition, anti-BPV IgG antibodies were induced in mice by intramuscular inoculation with each of the ten chimeric VLPs, indicating that the immunogenicity of the chimeric VLPs was not disrupted. Importantly, potent anti-FMDV viral neutralizing (VN) antibodies, which exhibited the highest titre of 1 : 176, were induced by two chimeric VLPs, rBPV-VLP-8E8(391) and rBPV-VLP-8E8(395), in which the 8E8 epitope was inserted into positions 391/392 and 395/396, respectively, in the VR VIII of BPV VP2. Our results demonstrated that the 391/392 and 395/396 positions in the VR VIII of the BPV VP2 protein can effectively display a foreign epitope, making this an attractive approach for the design of nanoparticle-vectored and epitope-based vaccines.
-
-
-
Propensity of a picornavirus polymerase to slip on potyvirus-derived transcriptional slippage sites
More LessThe substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to ‘slip’ during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymerase slippage in the family Potyviridae. This slippage results in either an insertion or a substitution, depending on whether the RNA duplex realigns following the insertion. In this study we investigated whether this phenomenon is a conserved feature of superfamily I viral RdRps, by inserting a range of potyvirus-derived slip-prone sequences into a picornavirus, Theiler’s murine encephalomyelitis virus (TMEV). Deep-sequencing analysis of viral transcripts indicates that the TMEV polymerase ‘slips’ at the sequences U6–7 and A6–7 to insert additional nucleotides. Such sequences are under-represented within picornaviral genomes, suggesting that slip-prone sequences create a fitness cost. Nonetheless, the TMEV insertional and substitutional spectrum differed from that previously determined for the potyvirus polymerase.
-
-
-
Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus
Both porcine epidemic diarrhoea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), which cause high mortality in piglets and produce similar clinical symptoms and histopathological morphology, belong to the genus Alphacoronavirus. Serological diagnosis plays an important role in distinguishing pathogen species. Together with the spike (S) protein, the nucleocapsid (N) protein is one of the immunodominant regions among coronaviruses. In this study, two-way antigenic cross-reactivity between the N proteins of PEDV and TGEV was observed by indirect immunofluorescence assay (IFA) and Western blot analysis. Furthermore, the PEDV N protein harbouring truncations of amino acids (aa) 1 to 170 or aa 125 to 301 was demonstrated to cross-react with the anti-TGEV N polyclonal antibody (PAb), whereas the truncation-expressing aa 302 to 401 resulted in a specific reaction with the anti-PEDV N PAb but not with the anti-TGEV N PAb. Mutants of the PEDV N protein were generated based on sequence alignment and structural analysis; we then confirmed that the N-terminal residues 58-RWRMRRGERIE-68 and 78-LGTGPHAD-85 contributed to the cross-reactivity. All the results provide vital clues for the development of precise diagnostic assays for porcine coronaviruses.
-
-
-
Beyond sites 1 and 2, miR-122 target sites in the HCV genome have negligible contributions to HCV RNA accumulation in cell culture
More LessHepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to two adjacent sites (S1 and S2) located at the 5′ end of the viral RNA genome. This interaction promotes HCV RNA accumulation by stabilising the viral RNA and resulting in alteration of the secondary structure of the viral genome. In addition to S1 and S2, the HCV genome contains several other putative miR-122 binding sites, one in the IRES region, three in the NS5B coding region, and one in the 3′ UTR. We investigated and compared the relative contributions of the S1, S2, IRES, NS5B (NS5B.1, 2 and 3) and 3′ UTR sites on protein expression, viral RNA accumulation, and infectious particle production by mutational analysis and supplementation with compensatory mutant miR-122 molecules. We found that mutations predicted to alter miR-122 binding at the IRES and NS5B.2 sites lead to reductions in HCV core protein expression and viral RNA accumulation; with a concomitant decrease in viral particle production for the NS5B.2 mutant. However, supplementation of miR-122 molecules with compensatory mutations did not rescue these site mutants to wild-type levels, suggesting that mutation of these sequences likely disrupts an additional interaction important to the HCV life cycle, beyond direct interactions with miR-122. Thus, S1 and S2 play a predominant role in viral RNA accumulation, while miR-122 interactions with the IRES, NS5B and 3′ UTR regions have negligible contributions to viral protein expression, viral RNA accumulation, and infectious particle production.
-
- Small DNA Viruses
-
-
Co-circulation of highly diverse Aleutian mink disease virus strains in Finland
Aleutian mink disease virus (AMDV) is the causative agent of Aleutian disease (AD), which affects mink of all genotypes and also infects other mustelids such as ferrets, martens and badgers. Previous studies have investigated diversity in Finnish AMDV strains, but these studies have been restricted to small parts of the virus genome, and mostly from newly infected farms and free-ranging mustelids. Here, we investigated the diversity and evolution of Finnish AMDV strains by sequencing the complete coding sequences of 31 strains from mink originating from farms differing in their virus history, as well as from free-ranging mink. The data set was supplemented with partial genomes obtained from 26 strains. The sequences demonstrate that the Finnish AMDV strains have considerable diversity, and that the virus has been introduced to Finland in multiple events. Frequent recombination events were observed, as well as variation in the evolutionary rate in different parts of the genome and between different branches of the phylogenetic tree. Mink in the wild carry viruses with high intra-host diversity and are occasionally even co-infected by two different strains, suggesting that free-ranging mink tolerate chronic infections for extended periods of time. These findings highlight the need for further sampling to understand the mechanisms playing a role in the evolution and pathogenesis of AMDV.
-
-
-
Impact of naturally occurring variation in the human papillomavirus 52 capsid proteins on recognition by type-specific neutralising antibodies
We investigated the impact of naturally occurring variation within the major (L1) and minor (L2) capsid proteins on the antigenicity of human papillomavirus (HPV) type 52 (HPV52). L1L2 pseudoviruses (PsVs) representing HPV52 lineage and sublineage variants A1, A2, B1, B2, C and D were created and tested against serum from naturally infected individuals, preclinical antisera raised against HPV52 A1 and D virus-like particles (VLPs) and neutralising monoclonal antibodies (MAbs) raised against HPV52 A1 VLP. HPV52 lineage D PsV displayed a median 3.1 (inter-quartile range 2.0–5.6) fold lower sensitivity to antibodies elicited following natural infection with, where data were available, HPV52 lineage A. HPV52 lineage variation had a greater impact on neutralisation sensitivity to pre-clinical antisera and MAbs. Chimeric HPV52 A1 and D PsV were created which identified variant residues in the FG (Q281K) and HI (K354T, S357D) loops as being primarily responsible for the reported differential sensitivities. Homology models of the HPV52 L1 pentamer were generated which permitted mapping these residues to a small cluster on the outer rim of the surface exposed pentameric L1 protein. These data contribute to our understanding of HPV L1 variant antigenicity and may have implications for seroprevalence or vaccine immunity studies based upon HPV52 antigens.
-
- Large DNA Viruses
-
-
Antibody arrests γ-herpesvirus olfactory super-infection independently of neutralization
More LessProtecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry – unlike in the lungs, opsonized virions did not reach IgG Fc receptor+ myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.
-
-
-
Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins
African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available, and progress is hindered by lack of knowledge concerning the extent of ASF virus (ASFV) strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Previously, we demonstrated that ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin (EP153R) are important for protection against homologous ASF infection. Here, we identified six discrete T-cell epitope regions present on CD2v and C-type lectin using IFN-γ ELISpot assay and PBMCs from ASF immune animals, indicating cellular reactivity to these proteins in the context of ASFV infection and protective immunity. Notably, three of the epitope regions map to previously described serotype-specific signature regions of these proteins. Improved understanding of ASFV protective antigens, relevant epitopes and their diversity in nature will facilitate ASFV subunit vaccine design and development.
-
- Retroviruses
-
-
Experimental infection of Japanese macaques with simian retrovirus 5
Recently, a large number of Japanese macaques (Macaca fuscata) died of an unknown hemorrhagic syndrome at Kyoto University Primate Research Institute (KUPRI) and an external breeding facility for National Institute for Physiological Sciences (NIPS). We previously reported that the hemorrhagic syndrome of Japanese macaques at KUPRI was caused by infection with simian retrovirus 4 (SRV-4); however, the cause of similar diseases that occurred at the external breeding facility for NIPS was still unknown. In this study, we isolated SRV-5 from Japanese macaques exhibiting thrombocytopenia and then constructed an infectious molecular clone of the SRV-5 isolate. When the SRV-5 isolate was inoculated into two Japanese macaques, severe thrombocytopenia was induced in one of two macaques within 22 days after inoculation. Similarly, the clone-derived virus was inoculated into the other two Japanese macaques, and one of two macaques developed severe thrombocytopenia within 22 days. On the other hand, the remaining two of four macaques survived as asymptomatic carriers even after administering an immunosuppressive agent, dexamethasone. As determined by real-time PCR, SRV-5 infected a variety of tissues in Japanese macaques, especially in digestive and lymph organs. We also identified the SRV-5 receptor as ASCT2, a neutral amino acid transporter in Japanese macaques. Taken together, we conclude that the causative agent of hemorrhagic syndrome occurred at the external breeding facility for NIPS was SRV-5.
-
-
-
The antiviral activity of rodent and lagomorph SERINC3 and SERINC5 is counteracted by known viral antagonists
A first step towards the development of a human immunodeficiency virus (HIV) animal model has been the identification and surmounting of species-specific barriers encountered by HIV along its replication cycle in cells from small animals. Serine incorporator proteins 3 (SERINC3) and 5 (SERINC5) were recently identified as restriction factors that reduce HIV-1 infectivity. Here, we compared the antiviral activity of SERINC3 and SERINC5 among mice, rats and rabbits, and their susceptibility to viral counteraction to their human counterparts. In the absence of viral antagonists, rodent and lagomorph SERINC3 and SERINC5 displayed anti-HIV activity in a similar range to human controls. Vesicular stomatitis virus G protein (VSV-G) pseudotyped virions were considerably less sensitive to restriction by all SERINC3/5 orthologs. Interestingly, HIV-1 Nef, murine leukemia virus (MLV) GlycoGag and equine infectious anemia virus (EIAV) S2 counteracted the antiviral activity of all SERINC3/5 orthologs with similar efficiency. Our results demonstrate that the antiviral activity of SERINC3/5 proteins is conserved in rodents and rabbits, and can be overcome by all three previously reported viral antagonists.
-
- Insect
-
- RNA Viruses
-
-
Occurrence of deformed wing virus variants in the stingless bee Melipona subnitida and honey bee Apis mellifera populations in Brazil
The global spread of the parasitic Varroa mite has introduced a new bee to the bee horizontal transmission route for several RNA viruses that bypasses existing barriers in honey bees. From among these viruses, deformed wing virus (DWV) is now among the most widespread insect pathogens in the world. Brazilian stingless bees are a diverse group often managed in close proximity to honey bees. Therefore, we investigated the prevalence and load of DWV in 21 stingless bee (Melipona subnitida) and 26 honey bee (Apis mellifera) colonies from Brazil. DWV was detected in all colonies with DWV-A and DWV-C dominating in M. subnitida, while DWV-A dominated in A. mellifera. Average total viral loads per bee were 8.8E+07 and 6.3E+07 in M. subnitida and A. mellifera, respectively, which are much lower than DWV levels (>1E+10) found in honey bees in the northern hemisphere. In colonies introduced 30 years ago to the remote island of Fernando de Noronha, the DWV load was low (<1E+03) in honey bees but we detected higher loads (1.6E+08) in all M. subnitida colonies on the island. This may suggest that minimal, if any, viral transmission of DWV from stingless bees to honey bees has occurred on this island. Furthermore, the ubiquitous presence of the DWV-C variant in M. subnitida colonies, and its rarity in A. mellifera, may again suggest that limited viral exchange between these two species is occurring.
-
-
-
Skunk River virus, a novel orbivirus isolated from Aedes trivittatus in the United States
The genomic organization and in vitro host range of a novel mosquito-associated orbivirus, designated Skunk River virus, is described. The virus was isolated from Aedes trivittatus collected in Iowa in the United States. Three recognized viruses were also recovered: Culex flavivirus (family Flaviviridae), Houston virus (family Mesoniviridae) and Umatilla virus (family Reoviridae). The genome of Skunk River virus contains 10 segments and its organization is characteristic of viruses in the genus Orbivirus (family Reoviridae). The coding region of each segment was fully sequenced, revealing that the greatest nucleotide identity was to the corresponding regions of Big Cypress orbivirus and Sathuvachari virus, two recently described mosquito-associated orbiviruses. The phylogenetic inference is in agreement with these findings. In vitro host range experiments revealed that Aedes, Anopheles and Culex cell lines, and select lepidopteran and rodent cell lines, are permissive to Skunk River virus replication. In conclusion, we provide evidence of a novel mosquito-associated orbivirus in Iowa.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less