1887

Abstract

Human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in macaques are accompanied by a combined early loss of CCR5 (CD195)-expressing CD4 memory T cells, loss of T-helper function and T-cell hyperactivation, which have all been associated with development of high virus load and disease progression. Here, a cohort of vaccinated simian–human immunodeficiency virus strain 89.6p (SHIV)-infected rhesus macaques, where preferential depletion of these memory T-cell subsets does not take place and CD4 T cells are relatively well maintained, was used to study the role of hyperactivation as an independent factor in the establishment of set-point virus load. In the acute phase of the infection, a transient loss of CD4 T cells, as well as strong increases in expression of proliferation and activation markers on CD4 and CD8 T cells, together with CD152 expression on CD4 T cells, were observed. Peak expression levels of these markers on CD4 T cells, but not on CD8 T cells, were correlated with high virus replication in the chronic phase of the infection. In addition, the peak expression level of these markers was correlated inversely with acute-phase, but not chronic-phase, HIV/SIV-specific gamma interferon responses. These data highlight a central role for an acute but transient CD4 decrease, as well as CD4 T-cell activation, as independent factors for prediction of set-point levels of virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.2008.006148-0
2009-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/915.html?itemId=/content/journal/jgv/10.1099/vir.2008.006148-0&mimeType=html&fmt=ahah

References

  1. Amara, R. R., Villinger, F., Altman, J. D., Lydy, S. L., O'Neil, S. P., Staprans, S. I., Montefiori, D. C., Xu, Y., Herndon, J. G. & other authors ( 2001; ). Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74.[CrossRef]
    [Google Scholar]
  2. Andersson, J., Boasso, A., Nilsson, J., Zhang, R., Shire, N. J., Lindback, S., Shearer, G. M. & Chougnet, C. A. ( 2005; ). The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 174, 3143–3147.[CrossRef]
    [Google Scholar]
  3. Barouch, D. H., Santra, S., Schmitz, J. E., Kuroda, M. J., Fu, T. M., Wagner, W., Bilska, M., Craiu, A., Zheng, X. X. & other authors ( 2000; ). Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492.[CrossRef]
    [Google Scholar]
  4. Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L., Khoruts, A., Larson, M. & other authors ( 2004; ). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200, 749–759.[CrossRef]
    [Google Scholar]
  5. Carbone, J., Gil, J., Benito, J. M., Navarro, J., Muñóz-Fernández, A., Bartolomé, J., Zabay, J. M., López, F. & Fernández-Cruz, E. ( 2000; ). Increased levels of activated subsets of CD4 T cells add to the prognostic value of low CD4 T cell counts in a cohort of HIV-infected drug users. AIDS 14, 2823–2829.[CrossRef]
    [Google Scholar]
  6. Cefai, D., Ferrer, M., Serpente, N., Idziorek, T., Dautry-Varsat, A., Debre, P. & Bismuth, G. ( 1992; ). Internalization of HIV glycoprotein gp120 is associated with down-modulation of membrane CD4 and p56lck together with impairment of T cell activation. J Immunol 149, 285–294.
    [Google Scholar]
  7. Clerici, M. & Shearer, G. M. ( 1993; ). A Th1→Th2 switch is a critical step in the etiology of HIV infection. Immunol Today 14, 107–111.[CrossRef]
    [Google Scholar]
  8. Deeks, S. G., Kitchen, C. M., Liu, L., Guo, H., Gascon, R., Narvaez, A. B., Hunt, P., Martin, J. N., Kahn, J. O. & other authors ( 2004; ). Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104, 942–947.[CrossRef]
    [Google Scholar]
  9. Doria-Rose, N. A., Ohlen, C., Polacino, P., Pierce, C. C., Hensel, M. T., Kuller, L., Mulvania, T., Anderson, D., Greenberg, P. D. & other authors ( 2003; ). Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge. J Virol 77, 11563–11577.[CrossRef]
    [Google Scholar]
  10. Epple, H. J., Loddenkemper, C., Kunkel, D., Troger, H., Maul, J., Moos, V., Berg, E., Ullrich, R., Schulzke, J. D. & other authors ( 2006; ). Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood 108, 3072–3078.[CrossRef]
    [Google Scholar]
  11. Estes, J. D., Li, Q., Reynolds, M. R., Wietgrefe, S., Duan, L., Schacker, T., Picker, L. J., Watkins, D. I., Lifson, J. D. & other authors ( 2006; ). Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis 193, 703–712.[CrossRef]
    [Google Scholar]
  12. Fauci, A. S. ( 1988; ). The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239, 617–622.[CrossRef]
    [Google Scholar]
  13. Froebel, K. S., Raab, G. M., D'Alessandro, C., Armitage, M. P., MacKenzie, K. M., Struthers, M., Whitelaw, J. M. & Yang, S. ( 2000; ). A single measurement of CD38CD8 cells in HIV+, long-term surviving injecting drug users distinguishes those who will progress to AIDS from those who will remain stable. Clin Exp Immunol 122, 72–78.[CrossRef]
    [Google Scholar]
  14. Gougeon, M. L., Garcia, S., Heeney, J., Tschopp, R., Lecoeur, H., Guetard, D., Rame, V., Dauguet, C. & Montagnier, L. ( 1993; ). Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses 9, 553–563.[CrossRef]
    [Google Scholar]
  15. Gougeon, M. L., Lecoeur, H., Boudet, F., Ledru, E., Marzabal, S., Boullier, S., Roue, R., Nagata, S. & Heeney, J. ( 1997; ). Lack of chronic immune activation in HIV-infected chimpanzees correlates with the resistance of T cells to Fas/Apo-1 (CD95)-induced apoptosis and preservation of a T helper 1 phenotype. J Immunol 158, 2964–2976.
    [Google Scholar]
  16. Gruters, R. A., Terpstra, F. G., De Goede, R. E., Mulder, J. W., De Wolf, F., Schellekens, P. T., Van Lier, R. A., Tersmette, M. & Miedema, F. ( 1991; ). Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS 5, 837–844.[CrossRef]
    [Google Scholar]
  17. Hazenberg, M. D., Otto, S. A., Cohen Stuart, J. W., Verschuren, M. C., Borleffs, J. C., Boucher, C. A., Coutinho, R. A., Lange, J. M., Rinke de Wit, T. F. & other authors ( 2000; ). Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nat Med 6, 1036–1042.[CrossRef]
    [Google Scholar]
  18. Hazenberg, M. D., Otto, S. A., van Benthem, B. H., Roos, M. T., Coutinho, R. A., Lange, J. M., Hamann, D., Prins, M. & Miedema, F. ( 2003; ). Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17, 1881–1888.[CrossRef]
    [Google Scholar]
  19. Horton, H., Vogel, T. U., Carter, D. K., Vielhuber, K., Fuller, D. H., Shipley, T., Fuller, J. T., Kunstman, K. J., Sutter, G. & other authors ( 2002; ). Immunization of rhesus macaques with a DNA prime/modified vaccinia virus Ankara boost regimen induces broad simian immunodeficiency virus (SIV)-specific T-cell responses and reduces initial viral replication but does not prevent disease progression following challenge with pathogenic SIVmac239. J Virol 76, 7187–7202.[CrossRef]
    [Google Scholar]
  20. Hryniewicz, A., Boasso, A., Edghill-Smith, Y., Vaccari, M., Fuchs, D., Venzon, D., Nacsa, J., Betts, M. R., Tsai, W. P. & other authors ( 2006; ). CTLA-4 blockade decreases TGF-β, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques. Blood 108, 3834–3842.[CrossRef]
    [Google Scholar]
  21. Karlsson, I., Malleret, B., Brochard, P., Delache, B., Calvo, J., Le Grand, R. & Vaslin, B. ( 2007; ). FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J Virol 81, 13444–13455.[CrossRef]
    [Google Scholar]
  22. Kinter, A. L., Hennessey, M., Bell, A., Kern, S., Lin, Y., Daucher, M., Planta, M., McGlaughlin, M., Jackson, R. & other authors ( 2004; ). CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 200, 331–343.[CrossRef]
    [Google Scholar]
  23. Koopman, G., Niphuis, H., Newman, W., Kishimoto, T. K., Maino, V. C. & Heeney, J. L. ( 2001; ). Decreased expression of IL-2 in central and effector CD4 memory cells during progression to AIDS in rhesus macaques. AIDS 15, 2359–2369.[CrossRef]
    [Google Scholar]
  24. Koopman, G., Mortier, D., Hofman, S., Niphuis, H., Fagrouch, Z., Norley, S., Sutter, G., Liljestrom, P. & Heeney, J. L. ( 2004; ). Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J Gen Virol 85, 2915–2924.[CrossRef]
    [Google Scholar]
  25. Koopman, G., Mortier, D., Hofman, S., Mathy, N., Koutsoukos, M., Ertl, P., Overend, P., van Wely, C., Thomson, L. J. & other authors ( 2008; ). Immune-response profiles induced by human immunodeficiency virus type 1 vaccine DNA, protein, or mixed-modality immunization: increased protection from pathogenic simian–human immunodeficiency virus viraemia with protein/DNA combination. J Gen Virol 89, 540–553.[CrossRef]
    [Google Scholar]
  26. Lane, H. C., Depper, J. M., Greene, W. C., Whalen, G., Waldmann, T. A. & Fauci, A. S. ( 1985; ). Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition. N Engl J Med 313, 79–84.[CrossRef]
    [Google Scholar]
  27. Leng, Q., Bentwich, Z., Magen, E., Kalinkovich, A. & Borkow, G. ( 2002; ). CTLA-4 upregulation during HIV infection: association with anergy and possible target for therapeutic intervention. AIDS 16, 519–529.[CrossRef]
    [Google Scholar]
  28. Li, Q., Duan, L., Estes, J. D., Ma, Z. M., Rourke, T., Wang, Y., Reilly, C., Carlis, J., Miller, C. J. & other authors ( 2005; ). Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152.
    [Google Scholar]
  29. Lifson, A. R., Rutherford, G. W. & Jaffe, H. W. ( 1988; ). The natural history of human immunodeficiency virus infection. J Infect Dis 158, 1360–1367.[CrossRef]
    [Google Scholar]
  30. Marcondes, M. C., Penedo, M. C., Lanigan, C., Hall, D., Watry, D. D., Zandonatti, M. & Fox, H. S. ( 2006; ). Simian immunodeficiency virus-induced CD4+ T cell deficits in cytokine secretion profile are dependent on monkey origin. Viral Immunol 19, 679–689.[CrossRef]
    [Google Scholar]
  31. Mattapallil, J. J., Letvin, N. L. & Roederer, M. ( 2004; ). T-cell dynamics during acute SIV infection. AIDS 18, 13–23.[CrossRef]
    [Google Scholar]
  32. Mattapallil, J. J., Douek, D. C., Hill, B., Nishimura, Y., Martin, M. & Roederer, M. ( 2005; ). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097.[CrossRef]
    [Google Scholar]
  33. McKay, P. F., Barouch, D. H., Schmitz, J. E., Veazey, R. S., Gorgone, D. A., Lifton, M. A., Williams, K. C. & Letvin, N. L. ( 2003; ). Global dysfunction of CD4 T-lymphocyte cytokine expression in simian–human immunodeficiency virus/SIV-infected monkeys is prevented by vaccination. J Virol 77, 4695–4702.[CrossRef]
    [Google Scholar]
  34. Meyaard, L., Otto, S. A., Jonker, R. R., Mynster, M. J., Keet, R. P. M. & Miedema, F. ( 1992; ). Programmed death of T cells in HIV-1 infection. Science 257, 217–219.[CrossRef]
    [Google Scholar]
  35. Meyaard, L., Hovenkamp, E., Keet, I. P., Hooibrink, B., de Jong, I. H., Otto, S. A. & Miedema, F. ( 1996; ). Single cell analysis of IL-4 and IFN-γ production by T cells from HIV-infected individuals: decreased IFN-γ in the presence of preserved IL-4 production. J Immunol 157, 2712–2718.
    [Google Scholar]
  36. Miedema, F., Petit, A. J., Terpstra, F. G., Schattenkerk, J. K., de Wolf, F., Al, B. J., Roos, M., Lange, J. M., Danner, S. A. & other authors ( 1988; ). Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest 82, 1908–1914.[CrossRef]
    [Google Scholar]
  37. Montes, M., Lewis, D. E., Sanchez, C., de Castilla, D. L., Graviss, E. A., Seas, C., Gotuzzo, E. & White, A. C., Jr ( 2006; ). Foxp3+ regulatory T cells in antiretroviral-naive HIV patients. AIDS 20, 1669–1671.[CrossRef]
    [Google Scholar]
  38. Mooij, P., Nieuwenhuis, I. G., Knoop, C. J., Doms, R. W., Bogers, W. M., Ten Haaft, P. J., Niphuis, H., Koornstra, W., Bieler, K. & other authors ( 2004; ). Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 78, 3333–3342.[CrossRef]
    [Google Scholar]
  39. Nilsson, J., Boasso, A., Velilla, P. A., Zhang, R., Vaccari, M., Franchini, G., Shearer, G. M., Andersson, J. & Chougnet, C. ( 2006; ). HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108, 3808–3817.[CrossRef]
    [Google Scholar]
  40. Nishimura, Y., Igarashi, T., Donau, O. K., Buckler-White, A., Buckler, C., Lafont, B. A., Goeken, R. M., Goldstein, S., Hirsch, V. M. & other authors ( 2004; ). Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc Natl Acad Sci U S A 101, 12324–12329.[CrossRef]
    [Google Scholar]
  41. Reimann, K. A., Parker, R. A., Seaman, M. S., Beaudry, K., Beddall, M., Peterson, L., Williams, K. C., Veazey, R. S., Montefiori, D. C. & other authors ( 2005; ). Pathogenicity of simian–human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J Virol 79, 8878–8885.[CrossRef]
    [Google Scholar]
  42. Ribeiro, R. M., Mohri, H., Ho, D. D. & Perelson, A. S. ( 2002; ). In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc Natl Acad Sci U S A 99, 15572–15577.[CrossRef]
    [Google Scholar]
  43. Schindler, M., Münch, J., Kutsch, O., Li, H., Santiago, M. L., Bibollet-Ruche, F., Müller-Trutwin, M. C., Novembre, F. J., Peeters, M. & other authors ( 2006; ). Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125, 1055–1067.[CrossRef]
    [Google Scholar]
  44. Shearer, G. M. & Clerici, M. ( 1991; ). Early T-helper cell defects in HIV infection. AIDS 5, 245–253.
    [Google Scholar]
  45. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., Zhang, Z. Q., Simon, A. J., Trigona, W. L. & other authors ( 2002; ). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335.[CrossRef]
    [Google Scholar]
  46. Silvestri, G., Sodora, D. L., Koup, R. A., Paiardini, M., O'Neil, S. P., McClure, H. M., Staprans, S. I. & Feinberg, M. B. ( 2003; ). Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18, 441–452.[CrossRef]
    [Google Scholar]
  47. Silvestri, G., Fedanov, A., Germon, S., Kozyr, N., Kaiser, W. J., Garber, D. A., McClure, H., Feinberg, M. B. & Staprans, S. I. ( 2005; ). Divergent host responses during primary simian immunodeficiency virus SIVsm infection of natural sooty mangabey and nonnatural rhesus macaque hosts. J Virol 79, 4043–4054.[CrossRef]
    [Google Scholar]
  48. Sopper, S., Sauer, U., Müller, J. G., Stahl-Hennig, C. & ter Meulen, V. ( 2000; ). Early activation and proliferation of T cells in simian immunodeficiency virus-infected rhesus monkeys. AIDS Res Hum Retroviruses 16, 689–697.[CrossRef]
    [Google Scholar]
  49. Sousa, A. E., Carneiro, J., Meier-Schellersheim, M., Grossman, Z. & Victorino, R. M. ( 2002; ). CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169, 3400–3406.[CrossRef]
    [Google Scholar]
  50. Sumpter, B., Dunham, R., Gordon, S., Engram, J., Hennessy, M., Kinter, A., Paiardini, M., Cervasi, B., Klatt, N. & other authors ( 2007; ). Correlates of preserved CD4+ T cell homeostasis during natural, nonpathogenic simian immunodeficiency virus infection of sooty mangabeys: implications for AIDS pathogenesis. J Immunol 178, 1680–1691.[CrossRef]
    [Google Scholar]
  51. Sun, Y., Permar, S. R., Buzby, A. P. & Letvin, N. L. ( 2007; ). Memory CD4+ T-lymphocyte loss and dysfunction during primary simian immunodeficiency virus infection. J Virol 81, 8009–8015.[CrossRef]
    [Google Scholar]
  52. Takeda, A., Igarashi, H., Nakamura, H., Kano, M., Iida, A., Hirata, T., Hasegawa, M., Nagai, Y. & Matano, T. ( 2003; ). Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J Virol 77, 9710–9715.[CrossRef]
    [Google Scholar]
  53. Ten Haaft, P., Verstrepen, B., Uberla, K., Rosenwirth, B. & Heeney, J. ( 1998; ). A pathogenic threshold of virus load defined in simian immunodeficiency virus- or simian-human immunodeficiency virus-infected macaques. J Virol 72, 10281–10285.
    [Google Scholar]
  54. Tsunemi, S., Iwasaki, T., Imado, T., Higasa, S., Kakishita, E., Shirasaka, T. & Sano, H. ( 2005; ). Relationship of CD4+CD25+ regulatory T cells to immune status in HIV-infected patients. AIDS 19, 879–886.[CrossRef]
    [Google Scholar]
  55. Veazey, R. S., DeMaria, M., Chalifoux, L. V., Shvetz, D. E., Pauley, D. R., Knight, H. L., Rosenzweig, M., Johnson, R. P., Desrosiers, R. C. & other authors ( 1998; ). Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431.[CrossRef]
    [Google Scholar]
  56. Veazey, R. S., Mansfield, K. G., Tham, I. C., Carville, A. C., Shvetz, D. E., Forand, A. E. & Lackner, A. A. ( 2000; ). Dynamics of CCR5 expression by CD4+ T cells in lymphoid tissues during simian immunodeficiency virus infection. J Virol 74, 11001–11007.[CrossRef]
    [Google Scholar]
  57. Voss, G., Manson, K., Montefiori, D., Watkins, D. I., Heeney, J., Wyand, M., Cohen, J. & Bruck, C. ( 2003; ). Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine. J Virol 77, 1049–1058.[CrossRef]
    [Google Scholar]
  58. Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K. M. & Krammer, P. H. ( 1995; ). Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497–500.[CrossRef]
    [Google Scholar]
  59. Zaunders, J. J., Munier, M. L., Kaufmann, D. E., Ip, S., Grey, P., Smith, D., Ramacciotti, T., Quan, D., Finlayson, R. & other authors ( 2005; ). Early proliferation of CCR5+ CD38+++ antigen-specific CD4+ Th1 effector cells during primary HIV-1 infection. Blood 106, 1660–1667.[CrossRef]
    [Google Scholar]
  60. Zaunders, J. J., Ip, S., Munier, M. L., Kaufmann, D. E., Suzuki, K., Brereton, C., Sasson, S. C., Seddiki, N., Koelsch, K. & other authors ( 2006; ). Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of CTLA-4 are linked to loss of antigen-specific CD4 T cells during primary human immunodeficiency virus type 1 infection. J Virol 80, 10162–10172.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.2008.006148-0
Loading
/content/journal/jgv/10.1099/vir.2008.006148-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error