1887

Abstract

The molecular mechanisms governing severe acute respiratory syndrome coronavirus-induced pathology are not fully understood. Virus infection and some individual viral proteins, including the 3a protein, induce apoptosis. However, the cellular targets leading to 3a protein-mediated apoptosis have not been fully characterized. This study showed that the 3a protein modulates the mitochondrial death pathway in two possible ways. Activation of caspase-8 through extrinsic signal(s) caused Bid activation. In the intrinsic pathway, there was activation of caspase-9 and cytochrome release from the mitochondria. This was the result of increased Bax oligomerization and higher levels of p53 in 3a protein-expressing cells, which depended on the activation of p38 MAP kinase (MAPK) in these cells. For p38 activation and apoptosis induction, the 3a cytoplasmic domain was sufficient. In direct Annexin V staining assays, the 3a protein-expressing cells showed increased apoptosis that was attenuated with the p38 MAPK inhibitor SB203580. A block in nuclear translocation of the STAT3 transcription factor in cells expressing the 3a protein was also observed. These results have been used to present a model of 3a-mediated apoptosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83665-0
2008-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/1960.html?itemId=/content/journal/jgv/10.1099/vir.0.83665-0&mimeType=html&fmt=ahah

References

  1. Adams, J. M. & Cory, S. ( 1998; ). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.[CrossRef]
    [Google Scholar]
  2. Baptiste, N. & Prives, C. ( 2004; ). p53 in the cytoplasm: a question of overkill? Cell 116, 487–489.[CrossRef]
    [Google Scholar]
  3. Bromberg, J. ( 2002; ). Stat proteins and oncogenesis. J Clin Invest 109, 1139–1142.[CrossRef]
    [Google Scholar]
  4. Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E. & Fornace, A. J., Jr ( 1999; ). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18, 6845–6854.[CrossRef]
    [Google Scholar]
  5. Chang, L. & Karin, M. ( 2001; ). Mammalian MAP kinase signalling cascades. Nature 410, 37–40.[CrossRef]
    [Google Scholar]
  6. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M. & Huang, D. C. ( 2005; ). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393–403.[CrossRef]
    [Google Scholar]
  7. Damm, E. M., Pelkmans, L., Kartenbeck, J., Mezzacasa, A., Kurzchalia, T. & Helenius, A. ( 2005; ). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168, 477–488.[CrossRef]
    [Google Scholar]
  8. Darnell, J. E., Jr ( 1997; ). STATs and gene regulation. Science 277, 1630–1635.[CrossRef]
    [Google Scholar]
  9. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B. & Martinou, J. C. ( 1999; ). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891–901.[CrossRef]
    [Google Scholar]
  10. Fujimoto, I., Pan, J., Takizawa, T. & Nakanishi, Y. ( 2000; ). Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol 74, 3399–3403.[CrossRef]
    [Google Scholar]
  11. Ghatan, S., Larner, S., Kinoshita, Y., Hetman, M., Patel, L., Xia, Z., Youle, R. J. & Morrison, R. S. ( 2000; ). p38 MAP kinase mediates Bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150, 335–347.[CrossRef]
    [Google Scholar]
  12. Green, D. R. & Kroemer, G. ( 2004; ). The pathophysiology of mitochondrial cell death. Science 305, 626–629.[CrossRef]
    [Google Scholar]
  13. Ito, N., Mossel, E. C., Narayanan, K., Popov, V. L., Huang, C., Inoue, T., Peters, C. J. & Makino, S. ( 2005; ). Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79, 3182–3186.[CrossRef]
    [Google Scholar]
  14. Kaye, M. ( 2006; ). SARS-associated coronavirus replication in cell lines. Emerg Infect Dis 12, 128–133.[CrossRef]
    [Google Scholar]
  15. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T. & van Oers, M. H. ( 1994; ). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.
    [Google Scholar]
  16. Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. ( 2007; ). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548–557.[CrossRef]
    [Google Scholar]
  17. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. & Newmeyer, D. D. ( 2002; ). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342.[CrossRef]
    [Google Scholar]
  18. Law, P. T., Wong, C. H., Au, T. C., Chuck, C. P., Kong, S. K., Chan, P. K., To, K. F., Lo, A. W., Chan, J. Y. & other authors ( 2005; ). The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86, 1921–1930.[CrossRef]
    [Google Scholar]
  19. Levy, D. E. & Lee, C. K. ( 2002; ). What does Stat3 do? J Clin Invest 109, 1143–1148.[CrossRef]
    [Google Scholar]
  20. Lu, W., Zheng, B. J., Xu, K., Schwarz, W., Du, L., Wong, C. K., Chen, J., Duan, S., Deubel, V. & Sun, B. ( 2006; ). Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A 103, 12540–12545.[CrossRef]
    [Google Scholar]
  21. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. ( 1998; ). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.[CrossRef]
    [Google Scholar]
  22. Lyles, D. S. ( 2000; ). Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 64, 709–724.[CrossRef]
    [Google Scholar]
  23. Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A. & other authors ( 2003; ). The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404.[CrossRef]
    [Google Scholar]
  24. Mayer, B. & Oberbauer, R. ( 2003; ). Mitochondrial regulation of apoptosis. News Physiol Sci 18, 89–94.
    [Google Scholar]
  25. Meek, D. W. ( 1998; ). Multisite phosphorylation and the integration of stress signals at p53. Cell Signal 10, 159–166.[CrossRef]
    [Google Scholar]
  26. Miyashita, T. & Reed, J. C. ( 1995; ). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299.[CrossRef]
    [Google Scholar]
  27. Mizutani, T., Fukushi, S., Saijo, M., Kurane, I. & Morikawa, S. ( 2004; ). Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem Biophys Res Commun 319, 1228–1234.[CrossRef]
    [Google Scholar]
  28. Niu, G., Wright, K. L., Ma, Y., Wright, G. M., Huang, M., Irby, R., Briggs, J., Karras, J., Cress, W. D. & other authors ( 2005; ). Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25, 7432–7440.[CrossRef]
    [Google Scholar]
  29. Noh, J. S., Kang, H. J., Kim, E. Y., Sohn, S., Chung, Y. K., Kim, S. U. & Gwag, B. J. ( 2000; ). Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH2-terminal protein kinase. J Neurochem 75, 2327–2334.
    [Google Scholar]
  30. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. & Tanaka, N. ( 2000; ). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058.[CrossRef]
    [Google Scholar]
  31. Padhan, K., Tanwar, C., Hussain, A., Hui, P. Y., Lee, M. Y., Cheung, C. Y., Peiris, J. S. & Jameel, S. ( 2007; ). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol 88, 3067–3077.[CrossRef]
    [Google Scholar]
  32. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W. & other authors ( 2003; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  33. Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K. & other authors ( 2003; ). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399.[CrossRef]
    [Google Scholar]
  34. She, Q. B., Chen, N. & Dong, Z. ( 2000; ). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275, 20444–20449.[CrossRef]
    [Google Scholar]
  35. Shen, S., Lin, P. S., Chao, Y. C., Zhang, A., Yang, X., Lim, S. G., Hong, W. & Tan, Y. J. ( 2005; ). The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun 330, 286–292.[CrossRef]
    [Google Scholar]
  36. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. ( 1997; ). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.[CrossRef]
    [Google Scholar]
  37. Tan, Y. J. ( 2005; ). The severe acute respiratory syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein. Virol J 2, 5 [CrossRef]
    [Google Scholar]
  38. Tan, Y. J., Goh, P. Y., Fielding, B. C., Shen, S., Chou, C. F., Fu, J. L., Leong, H. N., Leo, Y. S., Ooi, E. E. & other authors ( 2004a; ). Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 11, 362–371.
    [Google Scholar]
  39. Tan, Y. J., Teng, E., Shen, S., Tan, T. H., Goh, P. Y., Fielding, B. C., Ooi, E. E., Tan, H. C., Lim, S. G. & Hong, W. ( 2004b; ). A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78, 6723–6734.[CrossRef]
    [Google Scholar]
  40. Tan, Y. J., Tham, P. Y., Chan, D. Z., Chou, C. F., Shen, S., Fielding, B. C., Tan, T. H., Lim, S. G. & Hong, W. ( 2005; ). The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J Virol 79, 10083–10087.[CrossRef]
    [Google Scholar]
  41. Tartaglia, L. A., Rothe, M., Hu, Y. F. & Goeddel, D. V. ( 1993; ). Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 73, 213–216.[CrossRef]
    [Google Scholar]
  42. Timme, T. L., Goltsov, A., Tahir, S., Li, L., Wang, J., Ren, C., Johnston, R. N. & Thompson, T. C. ( 2000; ). Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene 19, 3256–3265.[CrossRef]
    [Google Scholar]
  43. Wang, H., Rao, S. & Jiang, C. ( 2007; ). Molecular pathogenesis of severe acute respiratory syndrome. Microbes Infect 9, 119–126.[CrossRef]
    [Google Scholar]
  44. Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G. & Youle, R. J. ( 1997; ). Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139, 1281–1292.[CrossRef]
    [Google Scholar]
  45. Wong, S. L., Chen, Y., Chan, C. M., Chan, C. S., Chan, P. K., Chui, Y. L., Fung, K. P., Waye, M. M., Tsui, S. K. & Chan, H. Y. ( 2005; ). In vivo functional characterization of the SARS-coronavirus 3a protein in Drosophila. Biochem Biophys Res Commun 337, 720–729.[CrossRef]
    [Google Scholar]
  46. Xiang, J., Gomez-Navarro, J., Arafat, W., Liu, B., Barker, S. D., Alvarez, R. D., Siegal, G. P. & Curiel, D. T. ( 2000; ). Pro-apoptotic treatment with an adenovirus encoding Bax enhances the effect of chemotherapy in ovarian cancer. J Gene Med 2, 97–106.
    [Google Scholar]
  47. Yamagishi, S., Yamada, M., Ishikawa, Y., Matsumoto, T., Ikeuchi, T. & Hatanaka, H. ( 2001; ). p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 276, 5129–5133.[CrossRef]
    [Google Scholar]
  48. Yan, H., Xiao, G., Zhang, J., Hu, Y., Yuan, F., Cole, D. K., Zheng, C. & Gao, G. F. ( 2004; ). SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73, 323–331.[CrossRef]
    [Google Scholar]
  49. Yang, Z. Y., Werner, H. C., Kong, W. P., Leung, K., Traggiai, E., Lanzavecchia, A. & Nabel, G. J. ( 2005; ). Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A 102, 797–801.[CrossRef]
    [Google Scholar]
  50. Yount, B., Roberts, R. S., Sims, A. C., Deming, D., Frieman, M. B., Sparks, J., Denison, M. R., Davis, N. & Baric, R. S. ( 2005; ). Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79, 14909–14922.[CrossRef]
    [Google Scholar]
  51. Yuan, X., Yao, Z., Wu, J., Zhou, Y., Shan, Y., Dong, B., Zhao, Z., Hua, P., Chen, J. & Cong, Y. ( 2007; ). G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway. Am J Respir Cell Mol Biol 37, 9–19.[CrossRef]
    [Google Scholar]
  52. Zeng, R., Yang, R. F., Shi, M. D., Jiang, M. R., Xie, Y. H., Ruan, H. Q., Jiang, X. S., Shi, L., Zhou, H. & other authors ( 2004; ). Characterization of the 3a protein of SARS-associated coronavirus in infected Vero E6 cells and SARS patients. J Mol Biol 341, 271–279.[CrossRef]
    [Google Scholar]
  53. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. & Vogelstein, B. ( 2000; ). Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992.[CrossRef]
    [Google Scholar]
  54. Zou, H., Li, Y., Liu, X. & Wang, X. ( 1999; ). An APAF-1⋅cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274, 11549–11556.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83665-0
Loading
/content/journal/jgv/10.1099/vir.0.83665-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error