1887

Abstract

To facilitate tracing of virion movement, the non-essential capsid proteins pUL35 of herpes simplex virus type 1 and pseudorabies virus (PrV) have been tagged with green fluorescent protein (GFP). However, the biological relevance of PrV pUL35 and the functionality of the fusion proteins have not yet been investigated in detail. We generated PrV mutants either lacking the 12 kDa UL35 gene product, or expressing GFP fused to the N terminus of pUL35. Remarkably, both mutants exhibited significant replication defects in rabbit kidney cells, which could be corrected in pUL35-expressing cells. After intranasal infection of mice both mutants showed delayed neuroinvasion, and survival times of the animals were extended to 3 days, compared with 2 days after wild-type infection. Thus, fusion of pUL35 with GFP resulted in a non-functional protein, which has to be considered for the use of corresponding mutants in tracing studies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83652-0
2008-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/6/1346.html?itemId=/content/journal/jgv/10.1099/vir.0.83652-0&mimeType=html&fmt=ahah

References

  1. Antinone S. E., Shubeita G. T., Coller K. E., Lee J. I., Haverlock-Moyns S., Gross S. P., Smith G. A. 2006; The herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J Virol 80:5494–5498 [CrossRef]
    [Google Scholar]
  2. Borst E. M., Mathys S., Wagner M., Muranyi W., Messerle M. 2001; The genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J Virol 75:1450–1458 [CrossRef]
    [Google Scholar]
  3. Chen D. H., Jiang H., Lee M., Liu F., Zhou Z. H. 1999; Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260:10–16 [CrossRef]
    [Google Scholar]
  4. Davison M. D., Rixon F. J., Davison A. J. 1992; Identification of genes encoding two capsid proteins (VP24 and VP26) of herpes simplex virus type 1. J Gen Virol 73:2709–2713 [CrossRef]
    [Google Scholar]
  5. Davison A. J., Eberle R., Hayward G. S., McGeoch D. J., Minson A. C., Pellet P. E., Roizman B., Studdert M. J., Thiry E. 2005; Family Herpesviridae. In Virus taxonomy pp 193–212Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego: Academic press;
    [Google Scholar]
  6. Desai P., Person S. 1998; Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72:7563–7568
    [Google Scholar]
  7. Desai P., DeLuca N. A., Person S. 1998; Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247:115–124 [CrossRef]
    [Google Scholar]
  8. Desai P., Akpa J. C., Person S. 2003; Residues of VP26 of herpes simplex virus type 1 that are required for its interaction with capsids. J Virol 77:391–404 [CrossRef]
    [Google Scholar]
  9. Döhner K., Radtke K., Schmidt S., Sodeik B. 2006; Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 80:8211–8224 [CrossRef]
    [Google Scholar]
  10. Douglas M. W., Diefenbach R. J., Homa F. L., Miranda-Saksena M., Rixon F. J., Vittone V., Byth K., Cunningham A. L. 2004; Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 279:28522–28530 [CrossRef]
    [Google Scholar]
  11. Fuchs W., Klupp B. G., Granzow H., Osterrieder N., Mettenleiter T. C. 2002; The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378 [CrossRef]
    [Google Scholar]
  12. Kaplan A. S., Vatter A. E. 1959; A comparison of the herpes simplex and pseudorabies viruses. Virology 7:394–407 [CrossRef]
    [Google Scholar]
  13. Karger A., Bettin B., Granzow H., Mettenleiter T. C. 1998; Simple and rapid purification of alphaherpesviruses by chromatography on a cation exchange membrane. J Virol Methods 70:219–224 [CrossRef]
    [Google Scholar]
  14. Klopfleisch R., Teifke J. P., Fuchs W., Kopp M., Klupp B. G., Mettenleiter T. C. 2004; Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol 78:2956–2966 [CrossRef]
    [Google Scholar]
  15. Klupp B. G., Hengartner C. J., Mettenleiter T. C., Enquist L. W. 2004; Complete annotated sequence of the pseudorabies virus genome. J Virol 78:424–440 [CrossRef]
    [Google Scholar]
  16. Kopp M., Granzow H., Fuchs W., Klupp B. G., Mundt E., Karger A., Mettenleiter T. C. 2003; The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J Virol 77:5339–5351 [CrossRef]
    [Google Scholar]
  17. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574 [CrossRef]
    [Google Scholar]
  18. McNabb D. S., Courtney R. J. 1992; Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame. J Virol 66:2653–2663
    [Google Scholar]
  19. Mettenleiter T. C. 2000; Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis – state of the art; June 1999 Vet Res 31:99–115
    [Google Scholar]
  20. Mettenleiter T. C. 2002; Herpesvirus assembly and egress. J Virol 76:1537–1547 [CrossRef]
    [Google Scholar]
  21. Rixon F. J., Addison C., McGregor A., Macnab S. J., Nicholson P., Preston V. G., Tatman J. D. 1996; Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins. J Gen Virol 77:2251–2260 [CrossRef]
    [Google Scholar]
  22. Roizman B., Knipe D. M. 2001; Herpes simplex viruses and their replication. In Fields Virology pp 2399–2459Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. Smith G. A., Gross S. P., Enquist L. W. 2001; Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470 [CrossRef]
    [Google Scholar]
  24. Smith G. A., Pomeranz L., Gross S. P., Enquist L. W. 2004; Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc Natl Acad Sci U S A 101:16034–16039 [CrossRef]
    [Google Scholar]
  25. Snyder A., Wisner T. W., Johnson D. C. 2006; Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins. J Virol 80:11165–11177 [CrossRef]
    [Google Scholar]
  26. Sodeik B., Ebersold M. W., Helenius A. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021 [CrossRef]
    [Google Scholar]
  27. Tatman J. D., Preston V. G., Nicholson P., Elliot R. M., Rixon F. J. 1994; Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol 75:1101–1113 [CrossRef]
    [Google Scholar]
  28. Trus B. L., Homa F. L., Booy F. P., Newcomb W. W., Thomsen D. R., Cheng N., Brown J. C., Steven A. C. 1995; Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J Virol 69:7362–7366
    [Google Scholar]
  29. Trus B. L., Gibson W., Cheng N., Steven A. C. 1999; Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 73:2181–2192
    [Google Scholar]
  30. Ward P. L., Ogle W. O., Roizman B. 1996; Assemblons: nuclear structures defined by aggregation of immature capsid and some tegument proteins of herpes simplex virus 1. J Virol 70:4623–4631
    [Google Scholar]
  31. Wingfield P. T., Stahl S. J., Thomsen D. R., Homa F. L., Booy F. P., Trus B. L., Steven A. C. 1997; Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. J Virol 71:8955–8961
    [Google Scholar]
  32. Wolfstein A., Nagel C. H., Radtke K., Döhner K., Allan V. J., Sodeik B. 2006; The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro . Traffic 7:227–237 [CrossRef]
    [Google Scholar]
  33. Zhou Z. H., He J., Jakana J., Tatman J. D., Rixon F. J., Chiu W. 1995; Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol 2:1026–1030 [CrossRef]
    [Google Scholar]
  34. Zhou Z. H., Chen D. H., Jakana J., Rixon F. J., Chiu W. 1999; Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73:3210–3218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83652-0
Loading
/content/journal/jgv/10.1099/vir.0.83652-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error