1887

Abstract

(CSFV) belongs to the genus and is the causative agent of classical swine fever, a haemorrhagic disease of pigs. The virus replicates in host cells without activating interferon (IFN) production and has been reported to be an antagonist of double-stranded RNA-induced apoptosis. The N-terminal protease (N) of CSFV is responsible for this evasion of the host innate immune response. In order to identify cellular proteins that interact with the N product of CSFV, a yeast two-hybrid screen of a human library was carried out, which identified IB, the inhibitor of NF-B, a transcription factor involved in the control of apoptosis, the immune response and IFN production. The N–IB interaction was confirmed using yeast two-hybrid analysis and additional co-precipitation assays. It was also shown that N localizes to both the cytoplasmic and nuclear compartments in stably transfected cells and in CSFV-infected cells. Following stimulation by tumour necrosis factor alpha, PK-15 cell lines expressing N exhibited transient nuclear accumulation of pIB, but no effect of CSFV infection on IB localization or NF-B p65 activation was observed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83643-0
2008-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/8/1881.html?itemId=/content/journal/jgv/10.1099/vir.0.83643-0&mimeType=html&fmt=ahah

References

  1. Aguilera, C., Hoya-Arias, R., Haegeman, G., Espinosa, L. & Bigas, A. ( 2004; ). Recruitment of IκBα to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci U S A 101, 16537–16542.[CrossRef]
    [Google Scholar]
  2. Arenzana-Seisdedos, F., Turpin, P., Rodriguez, M., Thomas, D., Hay, R. T., Virelizier, J. L. & Dargemont, C. ( 1997; ). Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J Cell Sci 110, 369–378.
    [Google Scholar]
  3. Baigent, S. J., Zhang, G., Fray, M. D., Flick-Smith, H., Goodbourn, S. & McCauley, J. W. ( 2002; ). Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J Virol 76, 8979–8988.[CrossRef]
    [Google Scholar]
  4. Baigent, S. J., Goodbourn, S. & McCauley, J. W. ( 2004; ). Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol 100, 135–144.[CrossRef]
    [Google Scholar]
  5. Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J. D., Hofmann, M. A. & Ruggli, N. ( 2007; ). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.[CrossRef]
    [Google Scholar]
  6. Bensaude, E., Turner, J. L. E., Wakeley, P. R., Sweetman, D. A., Pardieu, C., Drew, T. W., Wileman, T. & Powel, P. P. ( 2004; ). Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85, 1029–1037.[CrossRef]
    [Google Scholar]
  7. Chang, N. S. ( 2002; ). The non-ankyrin C terminus of IκBα physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-β1-mediated growth suppression. J Biol Chem 277, 10323–10331.[CrossRef]
    [Google Scholar]
  8. Charleston, B., Fray, M. D., Baigent, S., Carr, B. V. & Morrison, W. I. ( 2001; ). Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 82, 1893–1897.
    [Google Scholar]
  9. Chen, Z., Rijnbrand, R., Jangra, R. K., Devaraj, S. G., Qu, L., Ma, Y., Lemon, S. M. & Li, K. ( 2007; ). Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366, 277–292.[CrossRef]
    [Google Scholar]
  10. Diao, L., Zhang, B., Fan, J., Gao, X., Sun, S., Yang, K., Xin, D., Jin, N., Geng, Y. & Wang, C. ( 2005; ). Herpes virus proteins ICP0 and BICP0 can activate NF-κB by catalyzing IκBα ubiquitination. Cell Signal 17, 217–229.[CrossRef]
    [Google Scholar]
  11. Dreyfus, D. H., Nagasawa, M., Gelfand, E. W. & Ghoda, L. Y. ( 2005; ). Modulation of p53 activity by IκBα: evidence suggesting a common phylogeny between NF-κB and p53 transcription factors. BMC Immunol 6, 12 [CrossRef]
    [Google Scholar]
  12. Gil, L. H., Ansari, I. H., Vassilev, V., Liang, D., Lai, V. C., Zhong, W., Hong, Z., Dubovi, E. J. & Donis, R. O. ( 2006; ). The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 80, 900–911.[CrossRef]
    [Google Scholar]
  13. Hilton, L., Moganeradj, K., Zhang, G., Chen, Y. H., Randall, R. E., McCauley, J. W. & Goodbourn, S. ( 2006; ). The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80, 11723–11732.[CrossRef]
    [Google Scholar]
  14. Hiscott, J., Kwon, H. & Genin, P. ( 2001; ). Hostile takeovers: viral appropriation of the NF-κB pathway. J Clin Invest 107, 143–151.[CrossRef]
    [Google Scholar]
  15. Hiscott, J., Nguyen, T. L., Arguello, M., Nakhaei, P. & Paz, S. ( 2006; ). Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 25, 6844–6867.[CrossRef]
    [Google Scholar]
  16. Horscroft, N., Bellows, D., Ansari, I., Lai, V. C., Dempsey, S., Liang, D., Donis, R., Zhong, W. & Hong, Z. ( 2005; ). Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J Virol 79, 2788–2796.[CrossRef]
    [Google Scholar]
  17. Huxford, T., Huang, D. B., Malek, S. & Ghosh, G. ( 1998; ). The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95, 759–770.[CrossRef]
    [Google Scholar]
  18. Jacobs, M. D. & Harrison, S. C. ( 1998; ). Structure of an IκBα/NF-κB complex. Cell 95, 749–758.[CrossRef]
    [Google Scholar]
  19. Karin, M. & Ben-Neriah, Y. ( 2000; ). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621–663.[CrossRef]
    [Google Scholar]
  20. Meyers, G., Ege, A., Fetzer, C., von Freyburg, M., Elbers, K., Carr, V., Prentice, H., Charleston, B. & Schurmann, E. M. ( 2007; ). Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81, 3327–3338.[CrossRef]
    [Google Scholar]
  21. Pahl, H. L. ( 1999; ). Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853–6866.[CrossRef]
    [Google Scholar]
  22. Rodriguez, M. S., Thompson, J., Hay, R. T. & Dargemont, C. ( 1999; ). Nuclear retention of IκBα protects it from signal-induced degradation and inhibits nuclear factor κB transcriptional activation. J Biol Chem 274, 9108–9115.[CrossRef]
    [Google Scholar]
  23. Ruggli, N., Tratschin, J. D., Schweizer, M., McCullough, K. C., Hofmann, M. A. & Summerfield, A. ( 2003; ). Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro. J Virol 77, 7645–7654.[CrossRef]
    [Google Scholar]
  24. Ruggli, N., Bird, B. H., Liu, L., Bauhofer, O., Tratschin, J. D. & Hofmann, M. A. ( 2005; ). Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-α/β induction. Virology 340, 265–276.[CrossRef]
    [Google Scholar]
  25. Sachdev, S., Hoffmann, A. & Hannink, M. ( 1998; ). Nuclear localization of IκBα is mediated by the second ankyrin repeat: the IκBα ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol Cell Biol 18, 2524–2534.
    [Google Scholar]
  26. Santoro, M. G., Rossi, A. & Amici, C. ( 2003; ). NF-κB and virus infection: who controls whom. EMBO J 22, 2552–2560.[CrossRef]
    [Google Scholar]
  27. Schweizer, M. & Peterhans, E. ( 2001; ). Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75, 4692–4698.[CrossRef]
    [Google Scholar]
  28. Seago, J., Hilton, L., Reid, E., Doceul, V., Jeyatheesan, J., Moganeradj, K., McCauley, J., Charleston, B. & Goodbourn, S. ( 2007; ). The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 88, 3002–3006.[CrossRef]
    [Google Scholar]
  29. Shisler, J. L. & Jin, X. L. ( 2004; ). The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. J Virol 78, 3553–3560.[CrossRef]
    [Google Scholar]
  30. Silverman, N. & Maniatis, T. ( 2001; ). NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev 15, 2321–2342.[CrossRef]
    [Google Scholar]
  31. Su, F. & Schneider, R. J. ( 1996; ). Hepatitis B virus HBx protein activates transcription factor NF-κB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 70, 4558–4566.
    [Google Scholar]
  32. Summerfield, A., Knotig, S. M. & McCullough, K. C. ( 1998; ). Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol 72, 1853–1861.
    [Google Scholar]
  33. Summerfield, A., Knoetig, S. M., Tschudin, R. & McCullough, K. C. ( 2000; ). Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 272, 50–60.[CrossRef]
    [Google Scholar]
  34. Summerfield, A., Zingle, K., Inumaru, S. & McCullough, K. C. ( 2001; ). Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J Gen Virol 82, 1309–1318.
    [Google Scholar]
  35. Thiel, H. J., Plagemann, P. G. W. & Moennig, V. ( 1996; ). Pestiviruses. In Fields Virology, 3rd edn. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  36. Turpin, P., Hay, R. T. & Dargemont, C. ( 1999; ). Characterization of IκBα nuclear import pathway. J Biol Chem 274, 6804–6812.[CrossRef]
    [Google Scholar]
  37. van Oirschot, J. T. ( 1988; ). Description of the virus infection. In Classical Swine Fever and Related Viral Infections. Edited by B. Liess. Boston: Mantimus Nishoff.
  38. Weil, R., Sirma, H., Giannini, C., Kremsdorf, D., Bessia, C., Dargemont, C., Brechot, C. & Israel, A. ( 1999; ). Direct association and nuclear import of the hepatitis B virus X protein with the NF-κB inhibitor IκBα. Mol Cell Biol 19, 6345–6354.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83643-0
Loading
/content/journal/jgv/10.1099/vir.0.83643-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error