The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties Free

Abstract

The rotavirus non-structural protein NSP4 functions as the viral enterotoxin and intracellular receptor for the double-layered particles (DLP). The full-length protein cannot be expressed and/or purified to homogeneity from bacterial or insect cells. However, a bacterially expressed and purified mutant lacking the N-terminal 72 aa (ΔN72) was recently obtained from strains Hg18 and SA11 exhibiting approximately 17–20-, 150–200- and 13166–15800-fold lower DD (50% diarrhoea-inducing dose) values in suckling mice compared with that reported for the partially pure, full-length protein, a C-terminal M175I mutant and a synthetic peptide comprising aa 114–135, respectively, suggesting the requirement for a unique conformation for optimal functions of the purified protein. The stretch of approximately 40 aa from the C terminus of the cytoplasmic tail of the endoplasmic reticulum-anchored NSP4 is highly flexible and exhibits high sequence variation compared with the other regions, the significance of which in diarrhoea induction remain unresolved. Here, it was shown that every amino acid substitution or deletion in the flexible C terminus resulted in altered conformation, multimerization, trypsin resistance and thioflavin T (ThT) binding, and affected DLP binding and the diarrhoea-inducing ability of the highly diarrhoeagenic SA11 and Hg18 ΔN72 in suckling mice. These studies further revealed that high ThT fluorescence correlated with efficient diarrhoea induction, suggesting the importance of an optimal ThT-recognizable conformation in diarrhoea induction by purified NSP4. These results based on biological properties provide a possible conformational basis for understanding the influence of primary sequence variations on diarrhoea induction in newborn mice by purified NSP4s that cannot be explained by extensive sequence analyses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83617-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/6/1485.html?itemId=/content/journal/jgv/10.1099/vir.0.83617-0&mimeType=html&fmt=ahah

References

  1. Andrade M. A., Chacon P., Merelo J. J., Moran F. 1993; Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Protein Eng 6:383–390 [CrossRef]
    [Google Scholar]
  2. Angel J., Tang B., Feng N., Greenberg H. B., Bass D. 1998; Studies of the role for NSP4 in the pathogenesis of homologous murine rotavirus diarrhea. J Infect Dis 177:455–458 [CrossRef]
    [Google Scholar]
  3. Au K. S., Chan W. K., Burns J. W., Estes M. K. 1989; Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553–4562
    [Google Scholar]
  4. Au K.-S., Mattion N. M., Estes M. K. 1993; A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology 194:665–673 [CrossRef]
    [Google Scholar]
  5. Ball J. M., Tian P., Zeng C. Q.-Y., Morris A. P., Estes M. K. 1996; Age-dependent diarrhea induced by a rotavirus nonstructural glycoprotein. Science 272:101–104 [CrossRef]
    [Google Scholar]
  6. Bergmann C. C., Maass D., Poruchynsky M., Atkinson P. H., Bellamy A. R. 1989; Topology of the nonstructural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J 8:1695–1703
    [Google Scholar]
  7. Boshuizen J. A., Rossen J. W., Sitaram C. K., Kimenai F. F., Simons-Oosterhuis Y., Laffeber C., Buller H. A., Einerhand A. W. 2004; Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin- β 3 and fibronectin. J Virol 78:10045–10053 [CrossRef]
    [Google Scholar]
  8. Boyce M., Roy P. 2007; Recovery of infectious bluetongue virus from RNA. J Virol 81:2179–2186 [CrossRef]
    [Google Scholar]
  9. Broquet A. H., Lenoir C., Gardet A., Sapin C., Chwetzoff S., Jouniaux A.-M., Lopez S., Trugnan G., Bachelet M., Thomas G. 2007; HSP70 negatively controls rotavirus protein bioavailability in Caco-2 cells infected by the rotavirus RF strain. J Virol 81:1297–1304 [CrossRef]
    [Google Scholar]
  10. Bugarcic A., Taylor J. A. 2006; Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 80:12343–12349 [CrossRef]
    [Google Scholar]
  11. Chan W. K., Au K. S., Estes M. K. 1988; Topology of the simian rotavirus nonstructural glycoproteins (NS28) in the endoplasmic reticulum membrane. Virology 164:435–442 [CrossRef]
    [Google Scholar]
  12. Chang K. O., Kim Y. J., Saif L. J. 1999; Comparisons of nucleotide and deduced amino acid sequences of NSP4 genes of virulent and attenuated pairs of group A and C rotaviruses. Virus Genes 18:229–233 [CrossRef]
    [Google Scholar]
  13. Deepa R., Rao C. D., Suguna K. 2007; Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 152:847–859 [CrossRef]
    [Google Scholar]
  14. Devlin G. L., Chow M. K. M., Howlett G. J., Bottomley S. P. 2002; Acid denaturation of α 1-antitrypsin: characterization of a novel mechanism of serpin polymerization. J Mol Biol 324:859–870 [CrossRef]
    [Google Scholar]
  15. Dong Y., Zeng C. Q.-Y., Ball J. M., Estes M. K., Morris A. P. 1997; The rotavirus enterotoxin mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-triphosphate production. Proc Natl Acad Sci U S A 94:3960–3965 [CrossRef]
    [Google Scholar]
  16. Estes M. K. 2001; Rotaviruses and their replication. In Fields Virology vol 2, 4th edn. pp 1747–1785Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  17. Ferrari G. V., Mallender W. D., Inestrosa N. C., Rosenberry T. L. 2001; Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J Biol Chem 276:23282–23287 [CrossRef]
    [Google Scholar]
  18. Horie Y., Nakagomi O., Koshimura Y., Nakagomi T., Suzuki Y., Oka T., Susaki S., Matsuda Y., Watanabe S. 1999; Diarrhea induction by rotavirus NSP4 in the homologous mouse model system. Virology 262:398–407 [CrossRef]
    [Google Scholar]
  19. Jagannath M. R., Vethanayagam R. R., Reddy B. S. Y., Raman S., Rao C. D. 2000; Characterization of human symptomatic rotavirus isolates MP409 and MP480 having ‘long’ RNA electropherotype and subgroup I specificity, highly related to the P6[1], G8 type bovine rotavirus A5, from Mysore, India. Arch Virol 145:1339–1357 [CrossRef]
    [Google Scholar]
  20. Jagannath M. R., Kesavulu M. M., Deepa R., Sastri P. N., Kumar S. S., Suguna K., Rao C. D. 2006; N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. J Virol 80:412–425 [CrossRef]
    [Google Scholar]
  21. Kapikian A. Z., Hoshino Y., Chanock R. M. 2001; Rotaviruses. In Fields Virology vol. 2, 4th edn. pp 1787–1834Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  22. Karas M., Hillenkamp F. 1988; Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal Chem 60:2299–2301 [CrossRef]
    [Google Scholar]
  23. Kirkwood C. D., Coulson B. S., Bishop R. F. 1996; G3P2 rotaviruses causing diarrheal disease in neonates differ in VP4, VP7 and NSP4 sequence from G3P2 strains causing asymptomatic neonatal infection. Arch Virol 141:1661–1676 [CrossRef]
    [Google Scholar]
  24. Kobayashi T., Antar A. A. R., Boehme K. W., Danthi P., Eby E. A., Guglielmi K. M., Holm G. H., Johnson E. M., Maginnis M. S. other authors 2007; A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1:147–157 [CrossRef]
    [Google Scholar]
  25. Komoto S., Sasaki J., Taniguchi K. 2006; Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci U S A 103:4646–4651 [CrossRef]
    [Google Scholar]
  26. LeVine H. III 1993; Thioflavine T interaction with synthetic Alzheimer's disease β -amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410
    [Google Scholar]
  27. Lin S. L., Tian P. 2003; Detailed computational analysis of a comprehensive set of group A rotavirus NSP4 proteins. Virus Genes 26:271–282 [CrossRef]
    [Google Scholar]
  28. Lopez T., Camacho M., Zayas M., Najera R., Sanchez R., Arias C. F., Lopez S. 2005; Silencing the morphogenesis of rotavirus. J Virol 79:184–192 [CrossRef]
    [Google Scholar]
  29. Maass D. R., Atkinson P. H. 1990; Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J Virol 64:2632–2641
    [Google Scholar]
  30. Mirazimi A., Nilsson M., Svensson L. 1998; The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro . J Virol 72:8705–8709
    [Google Scholar]
  31. Mohan K. V. K., Atreya C. D. 2000; Comparative sequence analysis identified mutations outside the NSP4 cytotoxic domain of tissue culture-adapted ATCC-Wa strain of human rotavirus and a novel inter-species variable domain in its C-terminus. Arch Virol 145:1789–1799 [CrossRef]
    [Google Scholar]
  32. Mori Y., Borgan M. A., Ito N., Sugiyama M., Minamoto N. 2002; Diarrhea-inducing activity of avian rotavirus glycoproteins, which differ greatly from mammalian rotavirus NSP4 glycoproteins in deduced amino acid sequence in suckling mice. J Virol 76:5829–5834 [CrossRef]
    [Google Scholar]
  33. Naiki H., Higuchi K., Hosokawa M., Takeda T. 1989; Fluorometric determination of amyloid fibrils in vivo using the fluorescent dye, thioflavin T. Anal Biochem 177:244–249 [CrossRef]
    [Google Scholar]
  34. Newton K., Meyer J. C., Bellamy A. R., Taylor J. A. 1997; Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol 71:9458–9465
    [Google Scholar]
  35. O'Brien J. A., Taylor J. A., Bellamy A. R. 2000; Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 74:5388–5394 [CrossRef]
    [Google Scholar]
  36. Oka T., Nakagomi T., Nakagomi O. 2001; A lack of consistent amino acid substitutions in NSP4 between rotaviruses derived from diarrheal and asymptomatically infected kittens. Microbiol Immunol 45:173–177 [CrossRef]
    [Google Scholar]
  37. Parashar U. D., Gibson C. J., Breese J. S., Glass R. I. 2006; Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12:304–306 [CrossRef]
    [Google Scholar]
  38. Parr R. D., Storey S. M., Mitchell D. M., McIntosh A. L., Zhou M., Mir K. D., Ball J. M. 2006; The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 80:2842–2854 [CrossRef]
    [Google Scholar]
  39. Rao C. D., Gowda K., Reddy B. S. Y. 2000; Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses. Virology 276:104–113 [CrossRef]
    [Google Scholar]
  40. Schagger H., von Jagaw G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  41. Silvestri L. S., Tortorici M. A., Vasquez-Del Carpio R., Patton J. T. 2005; Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J Virol 79:15165–15174 [CrossRef]
    [Google Scholar]
  42. Storey S. M., Gibbons T. F., Williams C. V., Parr R. D., Schroeder F., Ball J. T. 2007; Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique. J Virol 81:5472–5483 [CrossRef]
    [Google Scholar]
  43. Taylor J. A., Meyer J. C., Legge M. A., O'Brien J. A., Street J. E., Lord V. J., Bergmann C. C., Bellamy A. R. 1992; Transient expression and mutational analysis of the rotavirus intracellular receptor: the C-terminal methionine residue is essential for ligand binding. J Virol 66:3566–3572
    [Google Scholar]
  44. Taylor J. A., O'Brien J. A., Lord V. J., Meyer J. C., Bellamy A. R. 1993; The RER-localized rotavirus intracellular receptor: a truncated purified soluble form is multivalent and binds virus particles. Virology 194:807–814 [CrossRef]
    [Google Scholar]
  45. Taylor J. A., O'Brien J. A., Yeager M. 1996; The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J 15:4469–4476
    [Google Scholar]
  46. Tian P., Hu Y., Schilling W. P., Lindsay D. A., Eiden J., Estes M. K. 1994; The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J Virol 68:251–257
    [Google Scholar]
  47. Tian P., Ball J. M., Zeng C. Q., Estes M. K. 1996; The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. J Virol 70:6973–6981
    [Google Scholar]
  48. Ward R. L., Mason B. B., Bernstein D. I., Sander D. S., Smith V. E., Zandle G. A., Rappaport R. S. 1997; Attenuation of a human rotavirus vaccine candidate did not correlate with mutations in the NSP4 gene. J Virol 71:6267–6270
    [Google Scholar]
  49. Xu A., Bellamy A. R., Taylor J. A. 2000; Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules. EMBO J 19:6465–6474 [CrossRef]
    [Google Scholar]
  50. Zhang M., Zeng C. Q., Dong Y., Ball J. M., Saif L. J., Morris A. P., Estes M. K. 1998; Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence. J Virol 72:3666–3672
    [Google Scholar]
  51. Zhang M., Zeng C. Q., Morris A. P., Estes M. K. 2000; A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol 74:11663–11670 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83617-0
Loading
/content/journal/jgv/10.1099/vir.0.83617-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed