Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in bats Free

Abstract

We previously reported the detection of bat coronaviruses (bat CoVs 1A, 1B, HKU7, HKU8 and bat-severe acute respiratory syndrome coronavirus) in spp. that cohabit a cave in Hong Kong. Here, we report the full genomic sequences of bat CoVs 1A, 1B and HKU8. Bat CoVs 1A and 1B, which are commonly found in the , are phylogenetically closely related. Using species-specific RT-PCR assays, bat CoVs 1A and 1B were confirmed to have distinct host specificities to and , respectively. Interestingly, co-infections of bat CoVs 1B and HKU8 in are detected in seven of 38 virus-positive specimens collected from 2004 to 2006. These findings highlight that co-infections of some coronaviruses might be common events in nature. The biological basis for the host restriction of bat coronaviruses, however, is yet to be determined.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83605-0
2008-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1282.html?itemId=/content/journal/jgv/10.1099/vir.0.83605-0&mimeType=html&fmt=ahah

References

  1. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [CrossRef]
    [Google Scholar]
  2. Chen L. L., Ou H. Y., Zhang R., Zhang C. T. 2003; ZCURVE_CoV: a new system to recognize protein coding genes in coronavirus genomes, and its applications in analyzing SARS-CoV genomes. Biochem Biophys Res Commun 307:382–388 [CrossRef]
    [Google Scholar]
  3. Chu D. K., Poon L. L., Chan K. H., Chen H., Guan Y., Yuen K. Y., Peiris J. S. 2006; Coronaviruses in bent-winged bats ( Miniopterus spp.). J Gen Virol 87:2461–2466 [CrossRef]
    [Google Scholar]
  4. Dominguez S. R., O'Shea T. J., Oko L. M., Holmes K. V. 2007; Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis 13:1295–1300 [CrossRef]
    [Google Scholar]
  5. Dong B. Q., Liu W., Fan X. H., Vijaykrishna D., Tang X. C., Gao F., Li L. F., Li G. J., Zhang J. X. other authors 2007; Detection of a novel and highly divergent coronavirus from Asian leopard cats and Chinese ferret badgers in Southern China. J Virol 81:6920–6926 [CrossRef]
    [Google Scholar]
  6. Dveksler G. S., Pensiero M. N., Cardellichio C. B., Williams R. K., Jiang G. S., Holmes K. V., Dieffenbach C. W. 1991; Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol 65:6881–6891
    [Google Scholar]
  7. Dye C., Siddell S. G. 2005; Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146. J Gen Virol 86:2249–2253 [CrossRef]
    [Google Scholar]
  8. Escors D., Camafeita E., Ortego J., Laude H., Enjuanes L. 2001; Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240 [CrossRef]
    [Google Scholar]
  9. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. 2006; Nidovirales : evolving the largest RNA virus genome. Virus Res 117:17–37 [CrossRef]
    [Google Scholar]
  10. Haijema B. J., Volders H., Rottier P. J. 2004; Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78:3863–3871 [CrossRef]
    [Google Scholar]
  11. Hiscox J. A., Mawditt K. L., Cavanagh D., Britton P. 1995; Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol 69:6219–6227
    [Google Scholar]
  12. Hofmann M. A., Chang R. Y., Ku S., Brian D. A. 1993; Leader-mRNA junction sequences are unique for each subgenomic mRNA species in the bovine coronavirus and remain so throughout persistent infection. Virology 196:163–171 [CrossRef]
    [Google Scholar]
  13. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [CrossRef]
    [Google Scholar]
  14. Lau S. K., Woo P. C., Li K. S., Huang Y., Wang M., Lam C. S., Xu H., Guo R., Chan K. H. other authors 2007; Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 367:428–439 [CrossRef]
    [Google Scholar]
  15. Liu P., Li L., Millership J. J., Kang H., Leibowitz J. L., Giedroc D. P. 2007; A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication. RNA 13:763–780 [CrossRef]
    [Google Scholar]
  16. Makino S., Keck J. G., Stohlman S. A., Lai M. M. 1986; High-frequency RNA recombination of murine coronaviruses. J Virol 57:729–737
    [Google Scholar]
  17. Muller M. A., Paweska J. T., Leman P. A., Drosten C., Grywna K., Kemp A., Braack L., Sonnenberg K., Niedrig M., Swanepoel R. 2007; Coronavirus antibodies in African bat species. Emerg Infect Dis 13:1367–1370 [CrossRef]
    [Google Scholar]
  18. Peiris J. S., Lai S. T., Poon L. L., Guan Y., Yam L. Y., Lim W., Nicholls J., Yee W. K., Yan W. W. other authors 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  19. Poon L. L., Chu D. K., Chan K. H., Wong O. K., Ellis T. M., Leung Y. H., Lau S. K., Woo P. C., Suen K. Y. other authors 2005; Identification of a novel coronavirus in bats. J Virol 79:2001–2009 [CrossRef]
    [Google Scholar]
  20. Pyrc K., Jebbink M. F., Berkhout B., van der Hoek L. 2004; Genome structure and transcriptional regulation of human coronavirus NL63. Virol J 1: 7 [CrossRef]
    [Google Scholar]
  21. Tang X. C., Zhang J. X., Zhang S. Y., Wang P., Fan X. H., Li L. F., Li G., Dong B. Q., Liu W. other authors 2006; Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 80:7481–7490 [CrossRef]
    [Google Scholar]
  22. Tung F. Y., Abraham S., Sethna M., Hung S. L., Sethna P., Hogue B. G., Brian D. A. 1992; The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated. Virology 186:676–683 [CrossRef]
    [Google Scholar]
  23. Vijaykrishna D., Smith G. J., Zhang J. X., Peiris J. S., Chen H., Guan Y. 2007; Evolutionary insights into the ecology of coronaviruses. J Virol 81:4012–4020 [CrossRef]
    [Google Scholar]
  24. Woo P. C., Lau S. K., Li K. S., Poon R. W., Wong B. H., Tsoi H. W., Yip B. C., Huang Y., Chan K. H., Yuen K. Y. 2006; Molecular diversity of coronaviruses in bats. Virology 351:180–187 [CrossRef]
    [Google Scholar]
  25. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . J Gen Virol 81:853–879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83605-0
Loading
/content/journal/jgv/10.1099/vir.0.83605-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed