1887

Abstract

Acute measles virus (MV) infection results in a decrease in plasma human immunodeficiency virus type 1 (HIV-1) RNA levels in co-infected children. An peripheral blood mononuclear cell (PBMC) culture system was used to assess the mechanisms by which MV blocks HIV-1 replication. MV inhibited proliferation of CD4 T lymphocytes, the target cell for HIV-1 replication. In the presence of MV, cells did not progress to G and S phases, steps critical for the completion of HIV-1 reverse transcription and productive replication. This block in cell-cycle progression was characterized by an increased proportion of CD4 and HIV-1-infected cells retained in the parental generation in PBMCs co-cultured with MV and HIV-1, and decreased levels of cyclins and RNA synthesis. Early HIV-1 replication was also inhibited in the presence of MV, as measured by reduced expression of a luciferase reporter gene and lower levels of both early (LTR) and late (LTR–gag) DNA intermediates of HIV-1 reverse transcription in the presence of CCR5-tropic HIV-1. The effects of MV on lymphoproliferation and p24 antigen production were reproduced by -butyrate and hydroxyurea, drugs that block the cell cycle in G and G/S, respectively. It was concluded that MV inhibits HIV-1 productive replication in part by blocking the proliferation of CD4 T lymphocytes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83601-0
2008-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/984.html?itemId=/content/journal/jgv/10.1099/vir.0.83601-0&mimeType=html&fmt=ahah

References

  1. Berger, E. A., Murphy, P. M. & Farber, J. M. ( 1999; ). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17, 657–700.[CrossRef]
    [Google Scholar]
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  3. Clark, E., Santiago, F., Deng, L., Chong, S., de la Fuente, C., Wang, L., Fu, P., Stein, D., Denny, T. & other authors ( 2000; ). Loss of G1/S checkpoint in human immunodeficiency virus type 1-infected cells is associated with a lack of cyclin-dependent kinase inhibitor p21/Waf1. J Virol 74, 5040–5052.[CrossRef]
    [Google Scholar]
  4. Darzynkiewicz, Z., Sharpless, T., Staiano-Coico, L. & Melamed, M. R. ( 1980; ). Subcompartments of the G1 phase of cell cycle detected by flow cytometry. Proc Natl Acad Sci U S A 77, 6696–6699.[CrossRef]
    [Google Scholar]
  5. Darzynkiewicz, Z., Traganos, F., Xue, S. B. & Melamed, M. R. ( 1981; ). Effect of n-butyrate on cell cycle progression and in situ chromatin structure of L1210 cells. Exp Cell Res 136, 279–293.[CrossRef]
    [Google Scholar]
  6. Derdeyn, C. A., Decker, J. M., Sfakianos, J. N., Wu, X., O'Brien, W. A., Ratner, L., Kappes, J. C., Shaw, G. M. & Hunter, E. ( 2000; ). Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74, 8358–8367.[CrossRef]
    [Google Scholar]
  7. Enders, J. F. & Peebles, T. C. ( 1954; ). Propagation in tissue cultures of cytopathic agents from patients with measles. Proc Soc Exp Biol Med 86, 277–286.[CrossRef]
    [Google Scholar]
  8. Engelking, O., Fedorov, L. M., Lilischkis, R., ter Meulen, V. & Schneider-Schaulies, S. ( 1999; ). Measles virus-induced immunosuppression in vitro is associated with deregulation of G1 cell cycle control proteins. J Gen Virol 80, 1599–1608.
    [Google Scholar]
  9. Furuya, Y., Lundmo, P., Short, A. D., Gill, D. L. & Isaacs, J. T. ( 1994; ). The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 54, 6167–6175.
    [Google Scholar]
  10. Garcia, M., Yu, X. F., Griffin, D. E. & Moss, W. J. ( 2005; ). In vitro suppression of human immunodeficiency virus type 1 replication by measles virus. J Virol 79, 9197–9205.[CrossRef]
    [Google Scholar]
  11. Grivel, J. C., Garcia, M., Moss, W. J. & Margolis, L. B. ( 2005; ). Inhibition of HIV-1 replication in human lymphoid tissues ex vivo by measles virus. J Infect Dis 192, 71–78.[CrossRef]
    [Google Scholar]
  12. Heaney, J., Barrett, T. & Cosby, S. L. ( 2002; ). Inhibition of in vitro leukocyte proliferation by morbilliviruses. J Virol 76, 3579–3584.[CrossRef]
    [Google Scholar]
  13. Hirsch, R. L., Griffin, D. E., Johnson, R. T., Cooper, S. J., Lindo de Soriano, I., Roedenbeck, S. & Vaisberg, A. ( 1984; ). Cellular immune responses during complicated and uncomplicated measles virus infections of man. Clin Immunol Immunopathol 31, 1–12.[CrossRef]
    [Google Scholar]
  14. Kannangara, S., DeSimone, J. A. & Pomerantz, R. J. ( 2005; ). Attenuation of HIV-1 infection by other microbial agents. J Infect Dis 192, 1003–1009.[CrossRef]
    [Google Scholar]
  15. Kashanchi, F., Agbottah, E. T., Pise-Masison, C. A., Mahieux, R., Duvall, J., Kumar, A. & Brady, J. N. ( 2000; ). Cell cycle-regulated transcription by the human immunodeficiency virus type 1 Tat transactivator. J Virol 74, 652–660.[CrossRef]
    [Google Scholar]
  16. Kilby, J. M. ( 2001; ). Human immunodeficiency virus pathogenesis: insights from studies of lymphoid cells and tissues. Clin Infect Dis 33, 873–884.[CrossRef]
    [Google Scholar]
  17. Kootstra, N. A., Zwart, B. M. & Schuitemaker, H. ( 2000; ). Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in early G1 phase of the cell cycle. J Virol 74, 1712–1717.[CrossRef]
    [Google Scholar]
  18. Korin, Y. D. & Zack, J. A. ( 1998; ). Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72, 3161–3168.
    [Google Scholar]
  19. Korin, Y. D. & Zack, J. A. ( 1999; ). Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73, 6526–6532.
    [Google Scholar]
  20. Laine, D., Bourhis, J. M., Longhi, S., Flacher, M., Cassard, L., Canard, B., Sautes-Fridman, C., Rabourdin-Combe, C. & Valentin, H. ( 2005; ). Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcγRIIB1 interactions, respectively. J Gen Virol 86, 1771–1784.[CrossRef]
    [Google Scholar]
  21. Li, Y., Hui, H., Burgess, C. J., Price, R. W., Sharp, P. M., Hahn, B. H. & Shaw, G. M. ( 1992; ). Complete nucleotide sequence, genome organization, and biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. J Virol 66, 6587–6600.
    [Google Scholar]
  22. Lori, F. & Lisziewicz, J. ( 2000; ). Rationale for the use of hydroxyurea as an anti-human immunodeficiency virus drug. Clin Infect Dis 30 (Suppl. 2), S193–S197.[CrossRef]
    [Google Scholar]
  23. Lori, F., Malykh, A., Cara, A., Sun, D., Weinstein, J. N., Lisziewicz, J. & Gallo, R. C. ( 1994; ). Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 266, 801–805.[CrossRef]
    [Google Scholar]
  24. Maurer-Schultze, B., Siebert, M. & Bassukas, I. D. ( 1988; ). An in vivo study on the synchronizing effect of hydroxyurea. Exp Cell Res 174, 230–243.[CrossRef]
    [Google Scholar]
  25. Moss, W. J., Ryon, J. J., Monze, M., Cutts, F., Quinn, T. C. & Griffin, D. E. ( 2002; ). Suppression of human immunodeficiency virus replication during acute measles. J Infect Dis 185, 1035–1042.[CrossRef]
    [Google Scholar]
  26. Naniche, D., Reed, S. I. & Oldstone, M. B. ( 1999; ). Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73, 1894–1901.
    [Google Scholar]
  27. Niewiesk, S., Ohnimus, H., Schnorr, J. J., Gotzelmann, M., Schneider-Schaulies, S., Jassoy, C. & ter Meulen, V. ( 1999; ). Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80, 2023–2029.
    [Google Scholar]
  28. Ruel, T. D., Achan, J., Gasasira, A. F., Charlebois, E. D., Rosenthal, P. J., Dorsey, G., Kamya, M. R., Kekitiinwa, A., Wong, J., Havlir, D. & The CHAMP Team ( 2007; ). Dramatic reductions in HIV RNA among HIV-infected children with acute measles in Uganda (abstract 707). In 14th Conference on Retroviruses and Opportunistic Infections (CROI), Los Angeles, 25–28 February 2007.
  29. Stacey, D. W. ( 2003; ). Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15, 158–163.[CrossRef]
    [Google Scholar]
  30. Stevenson, M., Stanwick, T. L., Dempsey, M. P. & Lamonica, C. A. ( 1990; ). HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 9, 1551–1560.
    [Google Scholar]
  31. Suzuki, Y., Misawa, N., Sato, C., Ebina, H., Masuda, T., Yamamoto, N. & Koyanagi, Y. ( 2003; ). Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells. Virus Genes 27, 177–188.[CrossRef]
    [Google Scholar]
  32. Toba, K., Winton, E. F., Koike, T. & Shibata, A. ( 1995; ). Simultaneous three-color analysis of the surface phenotype and DNA-RNA quantitation using 7-amino-actinomycin D and pyronin Y. J Immunol Methods 182, 193–207.[CrossRef]
    [Google Scholar]
  33. Ward, B. J., Johnson, R. T., Vaisberg, A., Jauregui, E. & Griffin, D. E. ( 1991; ). Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 61, 236–248.[CrossRef]
    [Google Scholar]
  34. Watt, G., Kantipong, P., de Souza, M., Chanbancherd, P., Jongsakul, K., Ruangweerayud, R., Loomis-Price, L. D., Polonis, V., Myint, K. S. & other authors ( 2000; ). HIV-1 suppression during acute scrub-typhus infection. Lancet 356, 475–479.[CrossRef]
    [Google Scholar]
  35. Watt, G., Kantipong, P. & Jongsakul, K. ( 2003; ). Decrease in human immunodeficiency virus type 1 load during acute dengue fever. Clin Infect Dis 36, 1067–1069.[CrossRef]
    [Google Scholar]
  36. Weidmann, A., Maisner, A., Garten, W., Seufert, M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000; ). Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 74, 1985–1993.[CrossRef]
    [Google Scholar]
  37. Williams, C. F., Klinzman, D., Yamashita, T. E., Xiang, J., Polgreen, P. M., Rinaldo, C., Liu, C., Phair, J., Margolick, J. B. & other authors ( 2004; ). Persistent GB virus C infection and survival in HIV-infected men. N Engl J Med 350, 981–990.[CrossRef]
    [Google Scholar]
  38. World Health Organization ( 2001; ). Nomenclature for describing the genetic characteristics of wild-type measles viruses (update). Part I. Wkly Epidemiol Rec 76, 242–247.
    [Google Scholar]
  39. Yamanouchi, K., Chino, F., Kobune, F., Kodama, H. & Tsuruhara, T. ( 1973; ). Growth of measles virus in the lymphoid tissues of monkeys. J Infect Dis 128, 795–799.[CrossRef]
    [Google Scholar]
  40. Yoshizuka, N., Yoshizuka-Chadani, Y., Krishnan, V. & Zeichner, S. L. ( 2005; ). Human immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through a mitogen-activated protein kinase signal transduction pathway. J Virol 79, 11366–11381.[CrossRef]
    [Google Scholar]
  41. Zack, J. A. ( 1995; ). The role of the cell cycle in HIV-1 infection. Adv Exp Med Biol 374, 27–31.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83601-0
Loading
/content/journal/jgv/10.1099/vir.0.83601-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error