1887

Abstract

Many aspects of the complex interaction between human immunodeficiency virus type 1 (HIV-1) and the human immune system remain elusive. Our objective was to study these interactions, focusing on the specific roles of dendritic cells (DCs). DCs enhance HIV-1 infection processes as well as promote an antiviral immune response. We explored the implications of these dual roles. A mathematical model describing the dynamics of HIV-1, CD4 and CD8 T-cells, and DCs interacting in a human lymph node was analysed and is presented here. We have validated the behaviour of our model against non-human primate simian immunodeficiency virus experimental data and published human HIV-1 data. Our model qualitatively and quantitatively recapitulates clinical HIV-1 infection dynamics. We have performed sensitivity analyses on the model to determine which mechanisms strongly affect infection dynamics. Sensitivity analysis identifies system interactions that contribute to infection progression, including DC-related mechanisms. We have compared DC-dependent and -independent routes of CD4 T-cell infection. The model predicted that simultaneous priming and infection of T cells by DCs drives early infection dynamics when activated T-helper cell numbers are low. Further, our model predicted that, while direct failure of DC function and an indirect failure due to loss of CD4 T-helper cells are both significant contributors to infection dynamics, the former has a more significant impact on HIV-1 immunopathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83600-0
2008-09-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/9/2228.html?itemId=/content/journal/jgv/10.1099/vir.0.83600-0&mimeType=html&fmt=ahah

References

  1. Arrighi, J. F., Pion, M., Garcia, E., Escola, J. M., van Kooyk, Y., Geijtenbeek, T. B. & Piguet, V. ( 2004; ). DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200, 1279–1288.[CrossRef]
    [Google Scholar]
  2. Bajaria, S. H. & Kirschner, D. ( 2005; ). CTL action during HIV-1 is determined via interactions with multiple cell types. In Deterministic and Stochastic Models for AIDS Epidemics and HIV Infection with Interventions, pp. 219–254. Edited by W. Y. Tan & H. Wu. River Edge, NJ: World Scientific.
  3. Bajaria, S. H., Webb, G., Cloyd, M. & Kirschner, D. ( 2002; ). Dynamics of naive and memory CD4+ T lymphocytes in HIV-1 disease progression. J Acquir Immune Defic Syndr 30, 41–58.[CrossRef]
    [Google Scholar]
  4. Biancotto, A., Grivel, J. C., Iglehart, S. J., Vanpouille, C., Lisco, A., Sieg, S. F., Debernardo, R., Garate, K., Rodriguez, B. & other authors ( 2007; ). Abnormal Activation and Cytokine Spectra in Lymph Nodes of Persons Chronically Infected with HIV-1. Blood.
  5. Blauvelt, A., Asada, H., Saville, M. W., Klaus-Kovtun, V., Altman, D. J., Yarchoan, R. & Katz, S. I. ( 1997; ). Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J Clin Invest 100, 2043–2053.[CrossRef]
    [Google Scholar]
  6. Blower, S. M. & Dowlatabadi, H. ( 1994; ). Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62, 229–243.[CrossRef]
    [Google Scholar]
  7. Brown, K. N., Trichel, A. & Barratt-Boyes, S. M. ( 2007; ). Parallel loss of myeloid and plasmacytoid dendritic cells from blood and lymphoid tissue in simian AIDS. J Immunol 178, 6958–6967.[CrossRef]
    [Google Scholar]
  8. Bukczynski, J., Wen, T., Wang, C., Christie, N., Routy, J. P., Boulassel, M. R., Kovacs, C. M., Macdonald, K. S., Ostrowski, M. & other authors ( 2005; ). Enhancement of HIV-specific CD8 T cell responses by dual costimulation with CD80 and CD137L. J Immunol 175, 6378–6389.[CrossRef]
    [Google Scholar]
  9. Cavert, W., Notermans, D. W., Staskus, K., Wietgrefe, S. W., Zupancic, M., Gebhard, K., Henry, K., Zhang, Z. Q., Mills, R. & other authors ( 1997; ). Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276, 960–964.[CrossRef]
    [Google Scholar]
  10. Chougnet, C. & Gessani, S. ( 2006; ). Role of gp120 in dendritic cell dysfunction in HIV infection. J Leukoc Biol 80, 994–1000.[CrossRef]
    [Google Scholar]
  11. Cohen, S. S., Li, C., Ding, L., Cao, Y., Pardee, A. B., Shevach, E. M. & Cohen, D. I. ( 1999; ). Pronounced acute immunosuppression in vivo mediated by HIV Tat challenge. Proc Natl Acad Sci U S A 96, 10842–10847.[CrossRef]
    [Google Scholar]
  12. Cohen Stuart, J. W., Hazebergh, M. D., Hamann, D., Otto, S. A., Borleffs, J. C., Miedema, F., Boucher, C. A. & de Boer, R. J. ( 2000; ). The dominant source of CD4+ and CD8+ T-cell activation in HIV infection is antigenic stimulation. J Acquir Immune Defic Syndr 25, 203–211.[CrossRef]
    [Google Scholar]
  13. Curran-Everett, D. ( 2000; ). Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol 279, R1–R8.
    [Google Scholar]
  14. Dioszeghy, V., Benlhassan-Chahour, K., Delache, B., Dereuddre-Bosquet, N., Aubenque, C., Gras, G., Le Grand, R. & Vaslin, B. ( 2006; ). Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression. J Virol 80, 236–245.[CrossRef]
    [Google Scholar]
  15. Doherty, P. C. & Christensen, J. P. ( 2000; ). Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18, 561–592.[CrossRef]
    [Google Scholar]
  16. Fallert, B. A. & Reinhart, T. A. ( 2002; ). Improved detection of simian immunodeficiency virus RNA by in situ hybridization in fixed tissue sections: combined effects of temperatures for tissue fixation and probe hybridization. J Virol Methods 99, 23–32.[CrossRef]
    [Google Scholar]
  17. Geiben-Lynn, R. ( 2002; ). Anti-human immunodeficiency virus noncytolytic CD8+ T-cell response: a review. AIDS Patient Care STDS 16, 471–477.[CrossRef]
    [Google Scholar]
  18. Gorry, P. R., Sterjovski, J., Churchill, M., Witlox, K., Gray, L., Cunningham, A. & Wesselingh, S. ( 2004; ). The role of viral coreceptors and enhanced macrophage tropism in human immunodeficiency virus type 1 disease progression. Sex Health 1, 23–34.[CrossRef]
    [Google Scholar]
  19. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P. & Steinman, R. M. ( 2004; ). HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101, 7669–7674.[CrossRef]
    [Google Scholar]
  20. Haase, A. T. ( 1999; ). Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 17, 625–656.[CrossRef]
    [Google Scholar]
  21. Hazenberg, M. D., Stuart, J. W., Otto, S. A., Borleffs, J. C., Boucher, C. A., de Boer, R. J., Miedema, F. & Hamann, D. ( 2000; ). T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95, 249–255.
    [Google Scholar]
  22. Ho, D. D. ( 1996; ). Viral counts count in HIV infection. Science 272, 1124–1125.[CrossRef]
    [Google Scholar]
  23. Janeway, C. ( 2005; ). Immunobiology: The Immune System in Health and Disease, 6th edn. New York: Garland Science.
  24. Janssen, E. M., Lemmens, E. E., Wolfe, T., Christen, U., von Herrath, M. G. & Schoenberger, S. P. ( 2003; ). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856.[CrossRef]
    [Google Scholar]
  25. Jekle, A., Keppler, O. T., De Clercq, E., Schols, D., Weinstein, M. & Goldsmith, M. A. ( 2003; ). In vivo evolution of human immunodeficiency virus type 1 toward increased pathogenicity through CXCR4-mediated killing of uninfected CD4 T cells. J Virol 77, 5846–5854.[CrossRef]
    [Google Scholar]
  26. Jin, X., Bauer, D. E., Tuttleton, S. E., Lewin, S., Gettie, A., Blanchard, J., Irwin, C. E., Safrit, J. T., Mittler, J. & other authors ( 1999; ). Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189, 991–998.[CrossRef]
    [Google Scholar]
  27. Kedzierska, K. & Crowe, S. M. ( 2001; ). Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 12, 133–150.[CrossRef]
    [Google Scholar]
  28. Kitano, H. & Oda, K. ( 2006; ). Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol 2, 0022
    [Google Scholar]
  29. Krathwohl, M. D., Schacker, T. W. & Anderson, J. L. ( 2006; ). Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193, 494–504.[CrossRef]
    [Google Scholar]
  30. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. & Littman, D. R. ( 2002; ). DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144.[CrossRef]
    [Google Scholar]
  31. Lekkerkerker, A. N., van Kooyk, Y. & Geijtenbeek, T. B. ( 2006; ). Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4, 169–176.[CrossRef]
    [Google Scholar]
  32. Levy, J. A. ( 2003; ). The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol 24, 628–632.[CrossRef]
    [Google Scholar]
  33. Margolick, J. B., Gange, S. J., Detels, R., O'Gorman, M. R., Rinaldo, C. R., Jr & Lai, S. ( 2006; ). Impact of inversion of the CD4/CD8 ratio on the natural history of HIV-1 infection. J Acquir Immune Defic Syndr 42, 620–626.[CrossRef]
    [Google Scholar]
  34. Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. ( 2008; ). A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol in press).
    [Google Scholar]
  35. Matano, T., Shibata, R., Siemon, C., Connors, M., Lane, H. C. & Martin, M. A. ( 1998; ). Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol 72, 164–169.
    [Google Scholar]
  36. McDonald, D., Wu, L., Bohks, S. M., KewalRamani, V. N., Unutmaz, D. & Hope, T. J. ( 2003; ). Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297.[CrossRef]
    [Google Scholar]
  37. Mellman, I. & Steinman, R. M. ( 2001; ). Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258.[CrossRef]
    [Google Scholar]
  38. Meng, X., Rosenthal, R. & Rubin, D. B. ( 1992; ). Comparing correlated correlation coefficients. Psychol Bull 111, 172–175.[CrossRef]
    [Google Scholar]
  39. Murphey-Corb, M., Martin, L. N., Rangan, S. R., Baskin, G. B., Gormus, B. J., Wolf, R. H., Andes, W. A., West, M. & Montelaro, R. C. ( 1986; ). Isolation of an HTLV-III-related retrovirus from macaques with simian AIDS and its possible origin in asymptomatic mangabeys. Nature 321, 435–437.[CrossRef]
    [Google Scholar]
  40. Pitcher, C. J., Hagen, S. I., Walker, J. M., Lum, R., Mitchell, B. L., Maino, V. C., Axthelm, M. K. & Picker, L. J. ( 2002; ). Development and homeostasis of T cell memory in rhesus macaque. J Immunol 168, 29–43.[CrossRef]
    [Google Scholar]
  41. Poli, G., Pantaleo, G. & Fauci, A. S. ( 1993; ). Immunopathogenesis of human immunodeficiency virus infection. Clin Infect Dis 17 (Suppl. 1), S224–S229.[CrossRef]
    [Google Scholar]
  42. Reimann, K. A., Parker, R. A., Seaman, M. S., Beaudry, K., Beddall, M., Peterson, L., Williams, K. C., Veazey, R. S., Montefiori, D. C. & other authors ( 2005; ). Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses. J Virol 79, 8878–8885.[CrossRef]
    [Google Scholar]
  43. Reinhart, T. A., Fallert, B. A., Pfeifer, M. E., Sanghavi, S., Capuano, S., III, Rajakumar, P., Murphey-Corb, M., Day, R., Fuller, C. L. & Schaefer, T. M. ( 2002; ). Increased expression of the inflammatory chemokine CXC chemokine ligand 9/monokine induced by interferon-gamma in lymphoid tissues of rhesus macaques during simian immunodeficiency virus infection and acquired immunodeficiency syndrome. Blood 99, 3119–3128.[CrossRef]
    [Google Scholar]
  44. Ridge, J. P., Di Rosa, F. & Matzinger, P. ( 1998; ). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.[CrossRef]
    [Google Scholar]
  45. Riggs, T., Walts, A., Perry, N., Bickle, L., Lynch, J. N., Myers, A., Flynn, J., Linderman, J. J., Miller, M. J. & Kirschner, D. E. ( 2008; ). A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning. J Theor Biol 250, 732–751.[CrossRef]
    [Google Scholar]
  46. Ronchese, F. & Hermans, I. F. ( 2001; ). Killing of dendritic cells: a life cut short or a purposeful death? J Exp Med 194, F23–F26.[CrossRef]
    [Google Scholar]
  47. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. ( 2000; ). Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol 165, 4910–4916.[CrossRef]
    [Google Scholar]
  48. Saltelli, A., Tarantola, S. & Chan, K. P.-S. ( 1999; ). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56.[CrossRef]
    [Google Scholar]
  49. Schmitz, J. E., Kuroda, M. J., Santra, S., Sasseville, V. G., Simon, M. A., Lifton, M. A., Racz, P., Tenner-Racz, K., Dalesandro, M. & other authors ( 1999; ). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860.[CrossRef]
    [Google Scholar]
  50. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. ( 1998; ). T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483.[CrossRef]
    [Google Scholar]
  51. Serre, K., Giraudo, L., Siret, C., Leserman, L. & Machy, P. ( 2006; ). CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur J Immunol 36, 1386–1397.[CrossRef]
    [Google Scholar]
  52. Shampine, L. F. & Reichelt, M. W. ( 1997; ). The matlab ode Suite. SIAM J Sci Comput 18, 1–22.[CrossRef]
    [Google Scholar]
  53. Shedlock, D. J. & Shen, H. ( 2003; ). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339.[CrossRef]
    [Google Scholar]
  54. Smith, C. M., Wilson, N. S., Waithman, J., Villadangos, J. A., Carbone, F. R., Heath, W. R. & Belz, G. T. ( 2004; ). Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat Immunol 5, 1143–1148.[CrossRef]
    [Google Scholar]
  55. Sol-Foulon, N., Moris, A., Nobile, C., Boccaccio, C., Engering, A., Abastado, J. P., Heard, J. M., van Kooyk, Y. & Schwartz, O. ( 2002; ). HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16, 145–155.[CrossRef]
    [Google Scholar]
  56. Steinman, R. M. ( 1991; ). The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9, 271–296.[CrossRef]
    [Google Scholar]
  57. Stilianakis, N. I., Dietz, K. & Schenzle, D. ( 1997; ). Analysis of a model for the pathogenesis of AIDS. Math Biosci 145, 27–46.[CrossRef]
    [Google Scholar]
  58. Trepel, F. ( 1974; ). Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52, 511–515.[CrossRef]
    [Google Scholar]
  59. Turville, S. G., Cameron, P. U., Handley, A., Lin, G., Pohlmann, S., Doms, R. W. & Cunningham, A. L. ( 2002; ). Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3, 975–983.[CrossRef]
    [Google Scholar]
  60. von Andrian, U. H. & Mempel, T. R. ( 2003; ). Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3, 867–878.[CrossRef]
    [Google Scholar]
  61. Wang, J. C. & Livingstone, A. M. ( 2003; ). Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol 171, 6339–6343.[CrossRef]
    [Google Scholar]
  62. Whitmire, J. K. & Ahmed, R. ( 2000; ). Costimulation in antiviral immunity: differential requirements for CD4+ and CD8+ T cell responses. Curr Opin Immunol 12, 448–455.[CrossRef]
    [Google Scholar]
  63. Wilson, N. S. & Villadangos, J. A. ( 2004; ). Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82, 91–98.[CrossRef]
    [Google Scholar]
  64. Wodarz, D. & Nowak, M. A. ( 2002; ). Mathematical models of HIV pathogenesis and treatment. Bioessays 24, 1178–1187.[CrossRef]
    [Google Scholar]
  65. Xiao, L., Rudolph, D. L., Owen, S. M., Spira, T. J. & Lal, R. B. ( 1998; ). Adaptation to promiscuous usage of CC and CXC-chemokine coreceptors in vivo correlates with HIV-1 disease progression. AIDS 12, F137–F143.[CrossRef]
    [Google Scholar]
  66. Yang, J., Huck, S. P., McHugh, R. S., Hermans, I. F. & Ronchese, F. ( 2006; ). Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo. Proc Natl Acad Sci U S A 103, 147–152.[CrossRef]
    [Google Scholar]
  67. Zhang, Z. Q., Wietgrefe, S. W., Li, Q., Shore, M. D., Duan, L., Reilly, C., Lifson, J. D. & Haase, A. T. ( 2004; ). Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc Natl Acad Sci U S A 101, 5640–5645.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83600-0
Loading
/content/journal/jgv/10.1099/vir.0.83600-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2228 - 2239

[PDF](2820 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error