1887

Abstract

Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe and non-replicative vaccine vectors for other species. With the aim of developing new recombinant vaccines for ruminants, we evaluated the safety and the immunogenicity of recombinant MYXV in sheep. studies indicated that ovine primary fibroblasts were not permissive for MYXV and that infection of ovine peripheral blood mononuclear cells occurred at a low rate. Although non-specific activation significantly improved the susceptibility of lymphocytes, MYXV infection remained abortive. Histological and immunohistochemical examination at the inoculation sites revealed the development of an inflammatory process and allowed the detection of sparse infected cells in the dermis. In addition, inoculated sheep developed an antibody response directed against MYXV and the product of the transgene. Overall, these results provide the first line of evidence on the potential of MYXV as a viral vector for ruminants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83595-0
2008-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/6/1371.html?itemId=/content/journal/jgv/10.1099/vir.0.83595-0&mimeType=html&fmt=ahah

References

  1. Aspden K., Passmore J.-A., Tiedt F., Williamson A.-L. 2003; Evaluation of lumpy skin disease virus, a capripoxvirus, as a replication-deficient vaccine vector. J Gen Virol 84:1985–1996 [CrossRef]
    [Google Scholar]
  2. Barcena J., Morales M., Vazquez B., Boga J. A., Parra F., Lucientes J., Pages-Mante A., Sanchez-Vizcaino J. M., Blasco R., Torres J. M. 2000; Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. J Virol 74:1114–1123 [CrossRef]
    [Google Scholar]
  3. Bertagnoli S., Gelfi J., Le Gall G., Boilletot E., Vautherot J., Rasschaert D., Laurent S., Petit F., Boucraut-Baralon C., Milon A. 1996; Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein. J Virol 70:5061–5066
    [Google Scholar]
  4. Boone J. D., Balasuriya U. B., Karaca K., Audonnet J. C., Yao J., He L., Nordgren R., Monaco F., Savini G. other authors 2007; Recombinant canarypox virus vaccine co-expressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep. Vaccine 25:672–678 [CrossRef]
    [Google Scholar]
  5. Boyle D. B., Coupar B. E. H. 1988; A dominant selectable marker for construction of recombinant poxviruses. Gene 65:123–128 [CrossRef]
    [Google Scholar]
  6. Carroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211 [CrossRef]
    [Google Scholar]
  7. Chahroudi A., Chavan R., Koyzr N., Waller E. K., Silvestri G., Feinberg N. B. 2005; Vaccinia virus tropism for hematolymphoid cells is determined by restricted expression of a unique virus receptor. J Virol 79:10397–10407 [CrossRef]
    [Google Scholar]
  8. Chantal J., Bertagnoli S. 2004; Myxomatosis. In Manual for Diagnostic Tests and Vaccines for Terrestrial Animals vol II, 5th edn. Paris: OIE;
    [Google Scholar]
  9. Collin N., Guérin J. L., Drexler I., Blanié S., Gelfi J., Boullier S., Foucras G., Sutter G., Messud-Petit F. 2005; The poxviral scrapin MV-LAP requires a myxoma viral infection context to efficiently downregulate MHC-I molecules. Virology 343:171–178 [CrossRef]
    [Google Scholar]
  10. Fenner F., Ross J. 1994; Myxomatosis. In The European Rabbit, the History and Biology of a Successful Colonizer . pp 205–239Edited by Thompson G. V., King C. M. New York: Oxford University Press;
  11. Guérin J. L., Gelfi J., Camus C., Delverdier M., Whisstock J. C., Amardeidhl M. F., Py R., Bertagnoli S., Messud-Petit F. 2001; Characterization and functional analysis of Serp3: a novel myxoma virus-encoded serpin involved in virulence. J Gen Virol 82:1407–1417
    [Google Scholar]
  12. Guérin J. L., Gelfi J., Boullier S., Delverdier M., Bellanger F. A., Bertagnoli S., Drexler I., Sutter G., Messud-Petit F. 2002; Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. J Virol 76:2912–2923 [CrossRef]
    [Google Scholar]
  13. Johnston J. B., Nazarian S. H., Natale R., McFadden G. 2005; Myxoma virus infection of primary human fibroblasts varies with cellular age and is regulated by host interferon responses. Virology 332:235–248 [CrossRef]
    [Google Scholar]
  14. Lalani A. S., Masters J., Zeng W., Barrett J., Pannu R., Everett H., Arendt C. W., McFadden G. 1999; Use of chemokine receptors by poxviruses. Science 286:1968–1971 [CrossRef]
    [Google Scholar]
  15. Macen J. L., Graham K. A., Lee S. F., Schreiber M., Boshkov L. K., McFadden G. 1996; Expression of the myxoma virus tumor necrosis factor receptor homologue and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T lymphocytes. Virology 218:232–237 [CrossRef]
    [Google Scholar]
  16. Mansouri M., Bartee E., Gouveia K., Hovey Nerenberg B. T., Barrett J., Thomas L., Thomas G., McFadden G., Fruh K. 2003; The PHD/LAP-domain protein M153R of myxoma virus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J Virol 77:1427–1440 [CrossRef]
    [Google Scholar]
  17. McCabe V. J., Spibey N. 2005; Potential for broad-spectrum protection against feline calicivirus using an attenuated myxoma virus expressing a chimeric FCV capsid protein. Vaccine 23:5380–5388 [CrossRef]
    [Google Scholar]
  18. McCabe V. J., Tarpey I., Spibey N. 2002; Vaccination of cats with an attenuated myxoma virus expressing feline calicivirus capsid protein. Vaccine 20:2454–2462 [CrossRef]
    [Google Scholar]
  19. Moss B. 2001; Poxviridae : the viruses and their replication. In Virology, 4th edn. pp 2849–2883Edited by Knipe D. M., Howley. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  20. Moss B., Carroll M. W., Wyatt L. S., Bennink J. R., Hirsch V. M., Goldstein S., Elkins W. R., Fuerst T. R., Lifson J. D. other authors 1996; Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. Adv Exp Med Biol 397:7–13
    [Google Scholar]
  21. Opgenorth A., Graham K., Nation N., Strayer D., McFadden G. 1992; Deletion analysis of two tandemly arranged virulence genes in myxoma virus. M11L and myxoma virus growth factor. J Virol 66:4720–4731
    [Google Scholar]
  22. Pignolet B., Duteyrat J. L., Allemandou A., Gelfi J., Foucras G., Bertagnoli S. 2007; In vitro permissivity of bovine cells for wild-type and vaccinal myxoma virus strains. Virol J 4:94 [CrossRef]
    [Google Scholar]
  23. Redfield R. R., Wright D. C., James W. D., Jones T. S., Brown C., Burke D. C. 1987; Disseminated vaccinia in military recruit with human immunodeficiency virus (HIV) disease. N Engl J Med 316:673–676 [CrossRef]
    [Google Scholar]
  24. Saurat P., Gilbert Y., Ganière J.-P. 1978; Etude d'une souche de virus myxomateux modifié. Rev Med Vet 129:415–451 (in French
    [Google Scholar]
  25. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851 [CrossRef]
    [Google Scholar]
  26. Sypula J., Wang F., Ma Y., Bell J., McFadden G. 2004; Myxoma virus tropism in human tumor cells. Gene Ther Mol Biol 8:103–114
    [Google Scholar]
  27. Tartaglia J., Jarrett O., Neil J. C., Desmettre P., Paoletti E. 1993; Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. J Virol 67:2370–2375
    [Google Scholar]
  28. Taylor J., Paoletti E. 1988; Fowlpox virus as a vector in non-avian species. Vaccine 6:466–468 [CrossRef]
    [Google Scholar]
  29. Taylor J., Weinberg R., Languet B., Desmettre P., Paoletti E. 1988; Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 6:497–503 [CrossRef]
    [Google Scholar]
  30. Wang F., Ma Y., Barrett J. W., Gao X., Loh J., Barton E., Virgin H. W., McFadden G. 2004; Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol 5:1266–1274 [CrossRef]
    [Google Scholar]
  31. Wang G., Barrett J. W., Stanford M., Werden S. J., Johnston J. B., Gao X., Sun M., Cheng J. Q., McFadden G. 2006; Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci U S A 103:4640–4645 [CrossRef]
    [Google Scholar]
  32. WHO (World Health Organization) 1980; The Global Eradication of Smallpox. Final Report of the Global Commission for the Certification of Smallpox Eradication . History of International Public Health no: 4 Geneva: World Health Organization;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83595-0
Loading
/content/journal/jgv/10.1099/vir.0.83595-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error