1887

Abstract

Modification of human herpesvirus DNA polymerase processivity factors (PFs) by phosphorylation occurs frequently during viral lytic replication. However, functional regulation of the herpesvirus PFs through phosphorylation is not well understood. In addition to processivity, the PF BMRF1 of Epstein–Barr virus can function as a transactivator to activate the BHLF1 promoter within the lytic origin of replication (oriLyt), which is assumed to facilitate DNA replication through remodelling viral chromatin structure. BMRF1 is known to be phosphorylated by the viral BGLF4 kinase, but its impact on BMRF1 function is unclear. Seven candidate BGLF4 target sites were predicted within a proline-rich region between the DNA-processivity and nuclear-localization domains of BMRF1. We show that four of these residues, Ser-337, Thr-344, Ser-349 and Thr-355, are responsible for the BGLF4-induced hyperphosphorylation of BMRF1. In functional analyses, a phosphorylation-mimicking mutant of BMRF1 shows similar nuclear localization, as well as DNA-binding ability, to the wild type; however, it displays stronger synergistic activation of the BHLF1 promoter with Zta. Notably, BGLF4 downregulates BMRF1 transactivation and enhances the transactivation activity of Zta and the synergistic activation of BMRF1 and Zta on the BHLF1 promoter. Our findings suggest that BGLF4 may modulate the activation of the oriLyt BHLF1 promoter coordinately through multiple mechanisms to facilitate optimal oriLyt-dependent viral DNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83546-0
2008-04-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/884.html?itemId=/content/journal/jgv/10.1099/vir.0.83546-0&mimeType=html&fmt=ahah

References

  1. Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y. & Kawaguchi, Y. ( 2006; ). Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J Virol 80, 5125–5134.[CrossRef]
    [Google Scholar]
  2. AuCoin, D. P., Colletti, K. S., Cei, S. A., Papouskova, I., Tarrant, M. & Pari, G. S. ( 2004; ). Amplification of the Kaposi';s sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology 318, 542–555.[CrossRef]
    [Google Scholar]
  3. Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., Ewence, A. E., Li, N., Hirozane-Kishikawa, T. & other authors ( 2007; ). Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104, 7606–7611.[CrossRef]
    [Google Scholar]
  4. Chan, S. R. & Chandran, B. ( 2000; ). Characterization of human herpesvirus 8 ORF59 protein (PF-8) and mapping of the processivity and viral DNA polymerase-interacting domains. J Virol 74, 10920–10929.[CrossRef]
    [Google Scholar]
  5. Chang, C. K. & Balachandran, N. ( 1991; ). Identification, characterization, and sequence analysis of a cDNA encoding a phosphoprotein of human herpesvirus 6. J Virol 65, 7085
    [Google Scholar]
  6. Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. ( 1999; ). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857–8866.
    [Google Scholar]
  7. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., III, Kouzarides, T. & other authors ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169.
    [Google Scholar]
  8. Chen, C. & Okayama, H. ( 1987; ). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745–2752.
    [Google Scholar]
  9. Chen, L. W., Lin, L. S., Chang, Y. S. & Liu, S. T. ( 1995; ). Functional analysis of EA-D of Epstein-Barr virus. Virology 211, 593–597.[CrossRef]
    [Google Scholar]
  10. Chen, M. R., Chang, S. J., Huang, H. & Chen, J. Y. ( 2000; ). A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol 74, 3093–3104.[CrossRef]
    [Google Scholar]
  11. Chen, C. J., Deng, Z., Kim, A. Y., Blobel, G. A. & Lieberman, P. M. ( 2001; ). Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21, 476–487.[CrossRef]
    [Google Scholar]
  12. Chien, Y. C., Chen, J. Y., Liu, M. Y., Yang, H. I., Hsu, M. M., Chen, C. J. & Yang, C. S. ( 2001; ). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877–1882.[CrossRef]
    [Google Scholar]
  13. Cohen, J. I. ( 2000; ). Epstein-Barr virus infection. N Engl J Med 343, 481–492.[CrossRef]
    [Google Scholar]
  14. Ellison, V. & Stillman, B. ( 2001; ). Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106, 655–660.[CrossRef]
    [Google Scholar]
  15. Gershburg, E. & Pagano, J. S. ( 2002; ). Phosphorylation of the Epstein-Barr virus (EBV) DNA polymerase processivity factor EA-D by the EBV-encoded protein kinase and effects of the l-riboside benzimidazole 1263W94. J Virol 76, 998–1003.[CrossRef]
    [Google Scholar]
  16. Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S. ( 2007; ). Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407–5412.[CrossRef]
    [Google Scholar]
  17. Gibson, W., Murphy, T. L. & Roby, C. ( 1981; ). Cytomegalovirus-infected cells contain a DNA-binding protein. Virology 111, 251–262.[CrossRef]
    [Google Scholar]
  18. Hammerschmidt, W. & Sugden, B. ( 1988; ). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427–433.[CrossRef]
    [Google Scholar]
  19. Holley-Guthrie, E. A., Seaman, W. T., Bhende, P., Merchant, J. L. & Kenney, S. C. ( 2005; ). The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 79, 745–755.[CrossRef]
    [Google Scholar]
  20. Kato, K., Kawaguchi, Y., Tanaka, M., Igarashi, M., Yokoyama, A., Matsuda, G., Kanamori, M., Nakajima, K., Nishimura, Y. & other authors ( 2001; ). Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol 82, 1457–1463.
    [Google Scholar]
  21. Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. & Kawaguchi, Y. ( 2003; ). Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 84, 3381–3392.[CrossRef]
    [Google Scholar]
  22. Kawaguchi, Y. & Kato, K. ( 2003; ). Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 13, 331–340.[CrossRef]
    [Google Scholar]
  23. Kawaguchi, Y., Kato, K., Tanaka, M., Kanamori, M., Nishiyama, Y. & Yamanashi, Y. ( 2003; ). Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol 77, 2359–2368.[CrossRef]
    [Google Scholar]
  24. Kerr, M. A. ( 1990; ). The structure and function of human IgA. Biochem J 271, 285–296.
    [Google Scholar]
  25. Kiehl, A. & Dorsky, D. I. ( 1995; ). Bipartite DNA-binding region of the Epstein-Barr virus BMRF1 product essential for DNA polymerase accessory function. J Virol 69, 1669–1677.
    [Google Scholar]
  26. Knotts, T. A., Orkiszewski, R. S., Cook, R. G., Edwards, D. P. & Weigel, N. L. ( 2001; ). Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites. J Biol Chem 276, 8475–8483.[CrossRef]
    [Google Scholar]
  27. Kokubo, T., Hashizume, K., Iwase, H., Arai, K., Tanaka, A., Toma, K., Hotta, K. & Kobayashi, Y. ( 2000; ). Humoral immunity against the proline-rich peptide epitope of the IgA1 hinge region in IgA nephropathy. Nephrol Dial Transplant 15, 28–33.
    [Google Scholar]
  28. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W. & Reed, J. C. ( 1993; ). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53, 4701–4714.
    [Google Scholar]
  29. Kudoh, A., Daikoku, T., Ishimi, Y., Kawaguchi, Y., Shirata, N., Iwahori, S., Isomura, H. & Tsurumi, T. ( 2006; ). Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 80, 10064–10072.[CrossRef]
    [Google Scholar]
  30. Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R. ( 2007; ). Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81, 5166–5180.[CrossRef]
    [Google Scholar]
  31. Li, J. S., Zhou, B. S., Dutschman, G. E., Grill, S. P., Tan, R. S. & Cheng, Y. C. ( 1987; ). Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity. J Virol 61, 2947–2949.
    [Google Scholar]
  32. Lieberman, P. M. & Berk, A. J. ( 1991; ). The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev 5, 2441–2454.[CrossRef]
    [Google Scholar]
  33. Lin, C. T., Wong, C. I., Chan, W. Y., Tzung, K. W., Ho, J. K., Hsu, M. M. & Chuang, S. M. ( 1990; ). Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 62, 713–724.
    [Google Scholar]
  34. Lin, J. C., Wang, W. Y., Chen, K. Y., Wei, Y. H., Liang, W. M., Jan, J. S. & Jiang, R. S. ( 2004; ). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350, 2461–2470.[CrossRef]
    [Google Scholar]
  35. Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S. & Tsai, C. H. ( 2000; ). Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74, 7391–7399.[CrossRef]
    [Google Scholar]
  36. Lu, J., Chua, H. H., Chen, S. Y., Chen, J. Y. & Tsai, C. H. ( 2003; ). Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256–262.
    [Google Scholar]
  37. Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. & Chen, M. R. ( 2006; ). Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology 345, 358–372.[CrossRef]
    [Google Scholar]
  38. Makarova, O., Kamberov, E. & Margolis, B. ( 2000; ). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970–972.
    [Google Scholar]
  39. Marsden, H. S., Campbell, M. E., Haarr, L., Frame, M. C., Parris, D. S., Murphy, M., Hope, R. G., Muller, M. T. & Preston, C. M. ( 1987; ). The 65,000-M r DNA-binding and virion trans-inducing proteins of herpes simplex virus type 1. J Virol 61, 2428–2437.
    [Google Scholar]
  40. Mitsouras, K., Wong, B., Arayata, C., Johnson, R. C. & Carey, M. ( 2002; ). The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 22, 4390–4401.[CrossRef]
    [Google Scholar]
  41. Ragoczy, T., Heston, L. & Miller, G. ( 1998; ). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978–7984.
    [Google Scholar]
  42. Schepers, A., Pich, D. & Hammerschmidt, W. ( 1996; ). Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220, 367–376.[CrossRef]
    [Google Scholar]
  43. Sinclair, A. J. ( 2003; ). bZIP proteins of human gammaherpesviruses. J Gen Virol 84, 1941–1949.[CrossRef]
    [Google Scholar]
  44. Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. ( 1997; ). Characterization of monoclonal antibodies to the Zta and DNase proteins of Epstein-Barr virus. J Biomed Sci 4, 69–77.[CrossRef]
    [Google Scholar]
  45. Tsurumi, T. ( 1993; ). Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol 67, 1681–1687.
    [Google Scholar]
  46. Tsurumi, T., Daikoku, T., Kurachi, R. & Nishiyama, Y. ( 1993; ). Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67, 7648–7653.
    [Google Scholar]
  47. Tucker, P. W., Slightom, J. L. & Blattner, F. R. ( 1981; ). Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge axons. Proc Natl Acad Sci U S A 78, 7684–7688.[CrossRef]
    [Google Scholar]
  48. Wang, J. T., Yang, P. W., Lee, C. P., Han, C. H., Tsai, C. H. & Chen, M. R. ( 2005; ). Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol 86, 3215–3225.[CrossRef]
    [Google Scholar]
  49. Xu, Y., Cei, S. A., Rodriguez Huete, A., Colletti, K. S. & Pari, G. S. ( 2004; ). Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J Virol 78, 11664–11677.[CrossRef]
    [Google Scholar]
  50. Young, L. S. & Rickinson, A. B. ( 2004; ). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757–768.[CrossRef]
    [Google Scholar]
  51. Yue, W., Gershburg, E. & Pagano, J. S. ( 2005; ). Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol 79, 5880–5885.[CrossRef]
    [Google Scholar]
  52. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. & Kenney, S. ( 1996; ). Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: effects on EBV transcription and lytic replication. J Virol 70, 5131–5142.
    [Google Scholar]
  53. Zhang, Q., Holley-Guthrie, E., Ge, J. Q., Dorsky, D. & Kenney, S. ( 1997; ). The Epstein-Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt. Virology 230, 22–34.[CrossRef]
    [Google Scholar]
  54. Zhang, Q., Holley-Guthrie, E., Dorsky, D. & Kenney, S. ( 1999; ). Identification of transactivator and nuclear localization domains in the Epstein–Barr virus DNA polymerase accessory protein, BMRF1. J Gen Virol 80, 69–74.
    [Google Scholar]
  55. Zhou, Z. X., Kemppainen, J. A. & Wilson, E. M. ( 1995; ). Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 9, 605–615.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83546-0
Loading
/content/journal/jgv/10.1099/vir.0.83546-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 884 – 895

Effects of BGLF4 on the expression of Sp1 and ZBP-89

IP kinase assay of GST–BMRF1 WT or d316–378

Amino acid sequence alignment of BMRF1 and PF8 reveals conserved SP and TP motifs within the proline-rich regions

Oligonucleotide primers and plasmid DNA templates used to generate site-directed mutants of BMRF1

[ Single PDF file] (1.1 MB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error