Rapid evolutionary dynamics of zucchini yellow mosaic virus Free

Abstract

Zucchini yellow mosaic virus (ZYMV) is an economically important virus of cucurbit crops. However, little is known about the rate at which this virus has evolved within members of the family , or the timescale of its epidemiological history. Herein, we present the first analysis of the evolutionary dynamics of ZYMV. Using a Bayesian coalescent approach we show that the coat protein of ZYMV has evolved at a mean rate of 5.0×10 nucleotide substitutions per site, per year. Notably, this rate is equivalent to those observed in animal RNA viruses. Using the same approach we show that the lineages of ZYMV sampled here have an ancestry that dates back no more than 800 years, suggesting that human activities have played a central role in the dispersal of ZYMV. Finally, an analysis of phylogeographical structure provides strong evidence for the evolution of ZYMV within individual countries.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83543-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1081.html?itemId=/content/journal/jgv/10.1099/vir.0.83543-0&mimeType=html&fmt=ahah

References

  1. Ali A., Li H., Schneider M. L., Sherman D. J., Grey S., Smith D., Roossinck M. J. 2006; Analysis of genetic bottlenecks during horizontal transmission of Cucumber Mosaic Virus . J Virol 80:8345–8350 [CrossRef]
    [Google Scholar]
  2. Blackman R. L., Eastop V. F. 2000 Aphids of the World's Crops: an Identification and Information Guide , 2nd edn. London, UK: John Wiley & Sons;
    [Google Scholar]
  3. Blua M. J., Perring T. M. 1989; Effect of zucchini yellow mosaic virus on development and yield of cantaloupe ( Cucumis melo ). Plant Dis 73:317–320 [CrossRef]
    [Google Scholar]
  4. Carrington C. V. F., Foster J. E., Pybus O. G., Bennett S. N., Holmes E. C. 2005; Invasion and maintenance of dengue virus type 2 and type 4 in the Americas. J Virol 79:14680–14687 [CrossRef]
    [Google Scholar]
  5. Chare E. R., Holmes E. C. 2004; Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. J Gen Virol 85:3149–3157 [CrossRef]
    [Google Scholar]
  6. Decker D. S., Wilson H. D. 1987; Allozyme variation in Cucurbita pepo complex: C. pepo var. overifera vs. C. texana . Syst Bot 12:263–273 [CrossRef]
    [Google Scholar]
  7. Decker-Walters D. S. 1990; Evidence for multiple domestication of Cucurbita pepo . In Biology and Utilization of the Cucurbitaceae . pp 96–101Edited by Bates D. M., Robinson R. W., Jeffrey C. Ithaca, NY: Cornell University Press;
  8. Decker-Walters D. S., Straub J. E., Chung S. M., Nakata E., Quemada H. D. 2002; Diversity in free-living populations of Cucurbita pepo (Cucurbitaceae) as assessed by random amplified polymorphic DNA. Syst Bot 27:19–28
    [Google Scholar]
  9. Desbiez C., Lecoq H. 1997; Zucchini yellow mosaic virus . Plant Pathol 46:809–829 [CrossRef]
    [Google Scholar]
  10. Desbiez C., Wipf-Scheibel C., Lecoq H. 2002; Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus ) with special reference to the Caribbean islands. Virus Res 85:5–16 [CrossRef]
    [Google Scholar]
  11. Drummond A. J., Rambaut A. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 [CrossRef]
    [Google Scholar]
  12. French R., Stenger D. C. 2003; Evolution of Wheat streak mosaic virus : dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41:199–214 [CrossRef]
    [Google Scholar]
  13. Gal-On A. 2007; Zucchini yellow mosaic virus : insect transmission and pathogenicity – the tails of two proteins. Mol Plant Pathol 8:139–150 [CrossRef]
    [Google Scholar]
  14. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  15. García-Arenal F., Fraile A., Malpica J. M. 2003; Variation and evolution of plant virus populations. Int Microbiol 6:225–232 [CrossRef]
    [Google Scholar]
  16. Glasa M., Pittnerova S. 2006; Complete genome sequence of a Slovak isolate of Zucchini yellow mosaic virus (ZYMV) provides further evidence of a close molecular relationship among Central European ZYMV isolates. J Phytopathol 154:436–440 [CrossRef]
    [Google Scholar]
  17. Glasa M., Svoboda J., Nováková S. 2007; Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes 35:415–421 [CrossRef]
    [Google Scholar]
  18. Hanada K., Suzuki Y., Gojobori T. 2004; A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21:1074–1080 [CrossRef]
    [Google Scholar]
  19. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165 [CrossRef]
    [Google Scholar]
  20. Johansen E., Edwards M. C., Hampton R. O. 1994; Seed transmission of viruses: current perspectives. Annu Rev Phytopathol 32:363–386 [CrossRef]
    [Google Scholar]
  21. Katis N. I., Tsitsipis J. A., Lykouressis D. P., Papapanayotou A., Kokinis G. M., Perdikis D. C., Manoussopoulos I. N. 2006; Transmission of Zucchini yellow mosaic virus by colonizing and non-colonizing aphids in Greece and new aphid vectors of the virus. J Phytopathol 154:293–302 [CrossRef]
    [Google Scholar]
  22. Kosakovsky Pond S. L., Frost S. D. W. 2005; Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533 [CrossRef]
    [Google Scholar]
  23. Li H., Roossinck M. 2004; Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol 78:10582–10587 [CrossRef]
    [Google Scholar]
  24. Lira R., Andrès T. C., Nee M. 1995; Cucurbita. In Systematic and Ecogeographic Studies on Crop Genepool s. Estudios taxonómicos y ecogeográficos de las Cucurbitaceae latino-americanas de importancia económica: Cucurbita, Sechium Sicana y Cyclanthera vol. 9 pp 1–115 Edited by R. Lira. México D. F. and Rome: International Plant Genetic Resources Institute, Instituto deo Biología;
    [Google Scholar]
  25. Lisa V., Boccardo G., D'Agostino G., Dellavalle G., D'Aquilio M. 1981; Characterization of a potyvirus that causes Zucchini yellow mosaic . Phytopathology 71:667–672 [CrossRef]
    [Google Scholar]
  26. Malpica J. M., Fraile A., Moreno I., Obies C. I., Drake J. W., Garcia-Arenal F. 2002; The rate and character of spontaneous mutations in an RNA virus. Genetics 162:1505–1511
    [Google Scholar]
  27. Perring T. M., Farrar C. A., Mayberry K., Blua M. J. 1992; Research reveals pattern of cucurbit virus spread. Calif Agric 46:35–39
    [Google Scholar]
  28. Pfosser M. F., Baumann H. 2002; Phylogeny and geographical differentiation of Zucchini yellow mosaic virus isolates ( Potyviridae ) based on molecular analysis of the coat protein and part of the cytoplasmic inclusion protein genes. Arch Virol 147:1599–1609 [CrossRef]
    [Google Scholar]
  29. Pirone T. P., Blanc S. 1996; Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247 [CrossRef]
    [Google Scholar]
  30. Posada D., Crandall K. A. 1998; Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  31. Robinson R. W., Provvidenti R., Shail J. W. 1993; Tests for seedborne transmission of Zucchini yellow mosaic virus . HortScience 28:694–696
    [Google Scholar]
  32. Rybicki E. P., Shukla D. D. 1992; Coat protein phylogeny and systematics of potyviruses. Arch Virol(Suppl 5)139–170
    [Google Scholar]
  33. Sacristán S., Malpica J. M., Fraile A., García-Arenal F. 2003; Estimation of population bottlenecks during systemic movement of Tobacco mosaic virus in tobacco plants. J Virol 77:9906–9911 [CrossRef]
    [Google Scholar]
  34. Schrijnwerkers C. C. F. M., Huijberts N., Bos L. 1991; Zucchini yellow mosaic virus : two outbreaks in the Netherlands and seed transmissibility. Eur J Plant Pathol 97:187–191
    [Google Scholar]
  35. Shukla D. D., Frenkel M. J., Ward C. W. 1991; Structure and function of the potyvirus genome with special reference to the coat protein coding region. Can J Plant Pathol 13:178–191 [CrossRef]
    [Google Scholar]
  36. Swofford D. L. 2003 paup*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  37. Tobias I., Palkovics L. 2003; Characterization of Hungarian isolates of zucchini yellow mosaic virus (ZYMV, potyvirus) transmitted by seeds of Curcubita pepo var Styriaca . Pest Manag Sci 59:493–497 [CrossRef]
    [Google Scholar]
  38. Urcuqui-Inchima S., Haenni A., Bernardi F. 2001; Potyvirus proteins: a wealth of functions. Virus Res 74:157–175 [CrossRef]
    [Google Scholar]
  39. Zhao M. F., Chen J., Zheng H.-Y., Adams M. J., Chen J.-P. 2003; Molecular analysis of Zucchini yellow mosaic virus isolates from Hangzhou, China. J Phytopathol 151:307–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83543-0
Loading
/content/journal/jgv/10.1099/vir.0.83543-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed